博碩士論文 993206004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:159 、訪客IP:18.219.132.200
姓名 林芳伃(FANG-YU LIN)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 多重功能改質黏土之吸持與催化特性研究
(The multiple functions of the modified clay sorption and catalytic properties)
相關論文
★ 工業廢水對灌溉水質影響之研究-以黃墘溪為例★ 廢冷陰極管汞回收處理效率之研究
★ 室內懸浮微粒與生物氣膠之相關性探討-以某醫學中心為例★ 化學機械研磨廢液對工業區污水處理效益與 操作成本之影響
★ 網路數位電力監測系統於大學用電行為分析之研究★ 光電業進行自願性碳標準(VCS)減量計畫可行性之研究
★ 污染農地整治後未能符合農用成因之探討★ 桃園縣居家入侵紅火蟻防治方法探討
★ 印刷電路板產業濕式製程廢液回收鈀金屬可行性之研究★ 不同表面特性黏土催化高分子凝聚劑與消毒劑(氯)反應之研究
★ 界面活性劑對土壤/水系統中有機污染物分佈行為之研究★ 淨水程序中添加高分子凝聚劑對混凝與加氯處理效應之研究
★ 土壤無機相對揮發性有機污染物吸∕脫附行為之影響★ 土壤對Triton 系列各EO鏈選擇性吸附之研究
★ 土壤有機質對土壤/水系統中低濃度非離子有機污染物吸附行為之研究★ 不同表面特性黏土催化水中有機物之氯化反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在自然環境下通常為無機與有機污染物同時存在,一般土壤攜帶負電,故對金屬陽離子具有高親和力,但於水溶液中對有機污染物則不具吸附性;傳統土壤改質劑可增加土壤有機質含量,並增加其對有機污染物之吸持能力,但卻對金屬離子不具親和力。本研究藉由不含有機質之鈉蒙特石與四種具特殊官能基之改質劑,以靜電作用力及接枝改質方式製備含人造有機質之改質土壤,利用其特殊結構可同時吸持無機重金屬與非離子有機污染物,並探討利用吸附之重金屬催化分解有機污染物之可行性。
實驗結果發現,改質劑提供之未共用電子對與金屬離子發生錯合反應,且對Cu2+ 之親和力較高,主因為Cu2+ 電負度較大易與有機質結合。改質土壤對BTEX的吸持以土壤有機相之分佈為主,而有機吸附質的水溶解度與其分佈常數呈反比。不同改質方式之改質土壤對重金屬的飽和吸附量以及有機物之分佈作用皆為靜電作用力大於接枝方式。相同有機吸附質( BTEX )於不同改質土壤的Koc 與改質土壤的有機碳含量呈負相關性,可能導因於BTEX之分佈行為受到改質土壤之改質劑結構與疏水性分佈環境所影響。本研究使用之有機改質劑所形成的分佈介質良好且具較少極性官能基影響BTEX之分佈行為。改質土壤對重金屬為無機相吸附作用而對非離子性有機化合物(NOCs)則為有機相分佈作用,研究證實在同時吸持作用下因吸附機制不同,故沒有發生相互競爭之行為。因催化活性之不同,Pd2+金屬於20秒即可將污染物降解60%左右,顯示過渡金屬具有良好之催化效果。
摘要(英) In the natural environment, the soil that carry negative charge has affinity for the metal ions, but not for organic pollutants in aqueous solution. Conventional soil modifier can increase soil organic matter content and increase their sorption capacity for organic pollutants but does not have affinity for metal ions.
In this present study, a new approach to modify soil using the specific modifier is focused. By excluding organic matters sodium montmorillonite with four special functional groups as the modifier, van der waals force, grafting method for modification of soil, and using its special structure which can absorb heavy metals and nonionic organic compounds (NOCs) simultaneously were carried out. Finally, using adsorbed heavy metal modified clay, decomposed nonionic organic were adsorbed. The results showed that ligand of modifier offer lone pair to the heavy metal to form complex reaction. The affinity for Cu2+ is better, which would be because Cu2+ has more electronegativity and binding to the ligand and hence increased adsorption. In addition, alkyl chain on the soil surface can be regarded as a partition medium. Modified clay sorption of BTEX in the distribution of soil organic-based and water solubility of organic adsorbate is inversely proportional to its distribution constant. Among different modified methods, modified clay saturation adsorption capacity of heavy metals, as well as the role of the distribution of organic matter is due to the van der waals force which is greater than the grafted way. For the same organic adsorbate (BTEX) in different adsorbent’s, distribution constant of organic carbon (Koc) and modified clay organic carbon content were negatively correlated, the distribution and behavior of BTEX by the hydrophobic modification of soil affected by the environment and structure. Natural soil by the organic modifier improved the distribution of NOCs better in this study and partition medium has affected less the polar functional groups of the distribution of BTEX behavior. Modification of soil for heavy metals is the inorganic phase of the adsorption and partition of the NOCs is the role of the organic phase. Thus it is confirmed that the role of sorption at the same time is due to the different adsorption mechanism and they do not compete with each other’’s. Due to different catalytic activity between Pd2+ and Cu2+, 75% of benzene was decomposed by Pd2+ within the first 20 s .It showed that transition metal has a good catalytic effect.
關鍵字(中) ★ Koc
★ BTEX
★ 改質土壤
★ 催化
★ 分佈介質
關鍵字(英) ★ catalytic
★ modified clay
★ BTEX
★ Koc
★ partition medium
論文目次 目 錄
目次 頁次
目錄……………………………………………………..................……............. I
圖目錄………………………………………....................................................... V
表目錄………………………………………......................……………............. VIII
第一章 前言…………………………………………......................................... 1
1-1 研究緣起…………………………………………………................…... 1
1-2 研究目的與內容…………………................................................……... 2
第二章 文獻回顧…………………………………………......................……... 3
2-1 土壤基本組成與性質……………………………….…....................….. 3
2-1-1 土壤無機質…………………….….. …..............................….. 3
2-1-2 土壤有機質…………………………………....................…… 4
2-2 土壤對污染物之吸持作用……………………………........................... 5
2-2-1 吸附理論………………………………….....................……... 7
2-2-2 兩相分佈……………………………….................................... 8
2-2-3 等溫吸附模式…………………………….…....................…... 12
2-2-4 等溫吸附曲線………………………........................................ 15
2-2-5 遲滯現象……………………………........................................ 17
2-2-6 土壤陽離子交換容量及其對重金屬之吸附….................…... 19
2-3 土壤有機組成之改質…………………………...................................… 22
2-3-1 以陽離子交換之改質方法……………......….......................... 23
2-3-2 以接枝之改質方法……………………......…................…...... 25
2-4 重金屬對有機污染物之催化反應……………………................……... 27
第三章 研究內容、設備、材料及方法………………………...........……….. 29
3-1 研究內容…………………………...........................…......................….. 29
3-2 實驗設備…………………......................................…............................. 31
3-2-1 真空冷凍乾燥機........................................................................ 31
3-2-2 水平震盪機................................................................................ 31
3-2-3 高速離心機................................................................................ 31
3-2-4 原子吸收光譜儀........................................................................ 31
3-2-5 氣相層析儀................................................................................ 31
3-2-6 氮氣吸附孔隙儀........................................................................ 32
3-2-7 電子天平.................................................................................... 32
3-2-8 pH 計......................................................................................... 32
3-2-9 傅利葉轉換紅外線光譜儀........................................................ 32
3-2-10 元素分析儀................................................................................ 33
3-3 實驗材料……………………………............……….….......................... 34
3-3-1 不含有機質土壤........................................................................ 34
3-3-2 有機改質劑................................................................................ 34
3-3-3 非離子性有機污染物................................................................ 36
3-3-4 重金屬標準品............................................................................ 36
3-3-5 溶劑............................................................................................ 37
3-4 實驗方法…………………....................………………........................... 37
3-4-1 改質土壤之製備........................................................................ 37
3-4-2 改質土壤對重金屬之吸附實驗................................................ 38
3-4-3 改質土壤對NOCs之吸持實驗................................................ 41
3-4-4 改質土壤同時對NOCs與重金屬之吸持實驗........................ 41
3-4-5 重金屬對NOCs之催化實驗.................................................... 41
第四章 結果與討論………………………………………………..................... 43
4-1 改質土壤物化性質之分析………………............................................... 43
4-1-1 比表面積、平均孔徑與孔徑分佈............................................ 43
4-1-2 傅利葉轉換紅外線光譜儀........................................................ 47
4-1-3 元素分析儀................................................................................ 51
4-2 重金屬之吸附實驗…………………….…………….............................. 52
4-2-1 不同改質劑對吸附實驗之影響………………….................... 52
4-2-2 不同重金屬對吸附實驗之影響…………................................ 59
4-2-3 不同改質方法對重金屬吸附實驗之影響................................ 61
4-2-4 自行改質土壤與市售吸附劑之比較........................................ 65
4-3 有機污染物之分佈作用……………………………....................……... 66
4-3-1 不同改質劑對BTEX吸持之影響............................................ 66
4-3-2 不同吸附質之吸持行為……………........................................ 72
4-3-3 不同改質方法之吸持行為........................................................ 75
4-3-4 改質土壤特性對BTEX分佈常數之影響................................ 80
4-4 改質土壤同時對重金屬與有機污染物之吸持作用…………............... 86
4-5 改質土壤吸附之重金屬催化同時吸持之有機污染物……................... 91
4-5-1 不同金屬催化能力之探討........................................................ 93
4-5-2 不同改質方式對金屬催化能力之探討.................................... 96
第五章 結論與建議.………………………………………………......……...... 98
5-1 結論………………………………………………………....................... 98
5-2 建議……………………………………………………................……... 99
參考文獻……………………………………………………………................... 100
圖 目 錄
目次 頁次
圖2-1 層狀矽酸鹽示意圖.................................................................................. 4
圖2-2 吸附等溫曲線示意圖.............................................................................. 15
圖2-3 IUPAC 的四種遲滯曲線(hysteresis loop).............................................. 17
圖2-4 不同孔洞形狀吸脫附行為示意圖.......................................................... 18
圖2-5 土壤中陽離子交換示意圖...................................................................... 21
圖2-6 表面改質之反應機制示意圖.................................................................. 26
圖3-1 研究架構圖.............................................................................................. 30
圖3-2 在不同pH值下Cu2+之形式.................................................................... 40
圖3-3 在不同pH值下Zn2+之形式.................................................................... 40
圖4-1 Na-mmt之氮氣等溫吸附曲線................................................................ 46
圖4-2 TDBA之氮氣等溫吸附曲線................................................................... 46
圖4-3 BAT之氮氣等溫吸附曲線...................................................................... 46
圖4-4 MPTMSGT之氮氣等溫吸附曲線......................................................... 46
圖4-5 MPTMS之氮氣等溫吸附曲線................................................................ 46
圖4-6 TPGT之氮氣等溫吸附曲線.................................................................. 46
圖4-7 改質樣品之BJH累積孔洞分佈圖.......................................................... 47
圖4-8 未改質土壤之紅外線光譜圖.................................................................. 48
圖4-9 BAT之紅外線光譜圖.............................................................................. 48
圖4-10 TDBA之紅外線光譜圖........................................................................... 49
圖4-11 TP之紅外線光譜圖................................................................................. 49
圖4-12 TPGT之紅外線光譜圖........................................................................... 49
圖4-13 MPTMS之紅外線光譜圖........................................................................ 50
圖4-14 MPTMSGT之紅外線光譜圖................................................................. 50
圖4-15 未改質土壤對Cu2+之Freundlich吸附等溫線圖.................................... 53
圖4-16 未改質土壤對Zn2+之Freundlich吸附等溫線........................................ 53
圖4-17 不同改質土壤對Cu2+吸附之Freundlich等溫吸附曲線........................ 56
圖4-18 不同改質土壤對Cu2+吸附之Langmuir等溫吸附曲線......................... 56
圖4-19 不同改質土壤對Zn2+吸附之Freundlich等溫吸附曲線........................ 58
圖4-20 不同改質土壤對Zn2+吸附之Langmuir等溫吸附曲線......................... 58
圖4-21 不同改質方法對Cu2+吸附之Freundlich等溫吸附曲線........................ 63
圖4-22 不同改質方法對Cu2+吸附之Langmuir等溫吸附曲線......................... 63
圖4-23 不同改質方法對Zn2+吸附之Freundlich等溫吸附曲線........................ 64
圖4-24 不同改質方法對Zn2+吸附之Langmuir等溫吸附曲線.......................... 64
圖4-25 不同改質土壤對Benzene與Toluene 之等溫吸附線............................ 67
圖4-26 不同改質土壤對Ethylbenzene與p-Xylene之等溫吸附線.................... 68
圖4-27 不同改質土壤對Benzene之等溫吸附線圖............................................ 70
圖4-28 不同改質土壤對Toluene之等溫吸附線圖............................................. 70
圖4-29 不同改質土壤對Ethylbenzene之等溫吸附線圖.................................... 71
圖4-30 不同改質土壤對p-xylene之等溫吸附線圖........................................... 71
圖4-31 改質土壤BAT對BTEX之等溫吸附線圖.............................................. 73
圖4-32 改質土壤TDBA對BTEX之等溫吸附線圖.......................................... 73
圖4-33 改質土壤TP對BTEX之等溫吸附線圖................................................. 74
圖4-34 改質土壤MPTMS對BTEX之等溫吸附線圖........................................ 74
圖4-35 不同改質方法之土壤TPGT對BTEX之等溫吸附線........................... 75
圖4-36 不同改質方法之土壤MPTMSGT對BTEX之等溫吸附線................ 76
圖4-37 不同改質方法之土壤對Benzene之等溫吸附線圖............................... 78
圖4-38 不同改質方法之土壤對Toluene之等溫吸附線圖................................. 78
圖4-39 不同改質方法之土壤對Ethylbenzene之等溫吸附線圖........................ 79
圖4-40 不同改質方法之土壤對p-Xylene之等溫吸附線圖.............................. 79
圖4-41 改質土壤MPTMS對Cu2+與Benzene同時吸附時Cu2+之Freundlich等溫吸附線.............................................................................................. 88
圖4-42 改質土壤MPTMSGT對Cu2+與Benzene同時吸附時Cu2+之Freundlich等溫吸附線............................................................................. 88
圖4-43 改質土壤MPTMS對Cu2+與Benzene同時吸附時Cu2+之Langmuir等溫吸附線.............................................................................................. 89
圖4-44 改質土壤MPTMSGT對Cu2+與Benzene同時吸附時Cu2+之Langmuir等溫吸附線.............................................................................. 89
圖4-45 改質土壤MPTMS對Cu2+與Benzene同時吸附時Benzene 之等溫吸附線...................................................................................................... 90
圖4-46 改質土壤MPTMSGT對Cu2+與Benzene同時吸附時Benzene 之等溫吸附線.................................................................................................. 90
圖4-47 不同改質方法土壤對Pd2+吸附之Freundlich等溫吸附曲線............... 91
圖4-48 不同改質土壤對Pd2+吸附之Langmuir等溫吸附曲線......................... 92
圖4-49 MPTMS吸附不同重金屬對Benzene 之催化圖................................... 95
圖4-50 MPTMSGT吸附不同重金屬對Benzene 之催化圖............................. 95
圖4-51 不同改質方法吸附Cu2+對Benzene 之催化圖..................................... 97
圖4-52 不同改質方法吸附Pd2+對Benzene 之催化圖...................................... 97
表 目 錄
目次 頁次
表2-1 土壤無機相三種主要粒徑之基本特性…………….….… 3
表2-2 分佈作用與吸附之比較……………………..…….…...… 10
表2-3 於25℃下離子之結晶半徑……………….….................... 24
表3-1 不同波數下之有機官能基……………….......................... 33
表3-2 SWy-2 鈉蒙特石物理性質表………....…........................ 34
表3-3 具特殊官能基之改質劑性質表………………..............… 35
表3-4 BTEX基本性質表………………………………..........… 36
表3-5 重金屬標準品基本性質表…………………...................... 37
表4-1 土壤改質後之代號表…………………………….....….… 43
表4-2 改質土壤比表面積與平均孔徑性質表………….....….… 45
表4-3 改質土壤元素重量百分比…………………….…............. 51
表4-4 未改質土壤之Langmuir isotherm 吸附參數……........… 54
表4-5 重金屬Langmuir等溫吸附模式參數……………............ 57
表4-6 重金屬吸附量與文獻值之比較………….......................... 60
表4-7 不同改質方法吸附重金屬Langmuir等溫吸附模式參數. 62
表4-8 Cu+2之Langmuir等溫吸附模式參數………..…….......... 65
表4-9 BTEX於改質土壤之吸附參數表……………..…............ 69
表4-10 BTEX於改質土壤之吸附參數表………………............... 76
表4-11 BTEX於改質土壤之有機碳分佈常數( Koc )..................... 82
表4-12 BTEX於改質土壤之有機質分佈常數( Kom )…….......…. 82
表4-13 BTEX於改質土壤之log Koc……………….………......… 84
表4-14 BTEX於改質土壤之log Kom……………………….…..... 84
表4-15 BTEX log Koc 與log Kom之估算值及文獻值之比較…..... 85
表4-16 重金屬Pd2+Langmuir等溫吸附模式參數………............. 92
參考文獻 1. Ray R.Weil,”The Nature and Properties of Soils”,4th Ed,Pearson Prentice Hall,(2008)
2. 莊雅婷,“具特殊官能基之土壤對水溶液中有機與無機污染物吸持行為之研究”,碩士論文,國立中央大學環境工程研究所,(2011)
3. Stevenson, F.J.,”Humus Chemistry”,John Wiley & Sons, Somersel,NJ,17,(1982)
4. Felbeck, G.T., “Structural Chemistry of Soil Humic Substances.”, Adv. Agron., 327-368, (1965)
5. 郭魁士, “土壤學’’,中國書局發行,1997
6. Lambert, S.M., “Functional Relationship Between Sorption in Soil and Chemical Structure.”, J. Agric. Food Chem., 15, 572-576, (1976)
7. Chiou, C.T.; Louis, J.P.; and Virgil, H.F., “A Physical Concept of Soil-Water Equilibria for Nonionic Organic Compounds.”, Science, 206, 831-832, (1979)
8. Chiou, C.T.; Porter, P.E.; and Schmedding, D.W., “Partition Equilibriaof Nonionic Organic Compounds between Soil Organic Matter and Water.”, Environ. Sci. Technol., 17, 227-231, (1983)
9. Chiou, C.T.; Shoup, T.D.; and Porter, P.E., “Mechanistic Roles of Soil Humus and Minerals in the Sorption of Nonionic Organic Compounds from Aqueous and Organic Solution.”, Org. Geochem., 8, 9-14, (1985)
10. Lambert ,S.M., Porter, P.E., Schieferstein, R.H.,” Movement and sorption of chemicals applied to the soil.”Weed,13,185-190,1965.
11. Chiou, C.T.; Lee, J.F.; and Boyd, S.A., “The Surface Area of Soil Organic Matter.”, Environ. Sci. Technol., 24, 1164-1166, (1990)
12. Chiou, C.T., “Partition and Adsorption of Organic Contaminants in Environmental Systems”, Hoboken, N.J. : Wiley-Interscience, (2002)
13. Means, J.C.; Wood, S.G.; Hassett, J.J.; and Banwart. W.L., “Sorption of Polynuclear Aromatic Hydrocarbons by Sediments and Soils.”, Environ. Sci. Technol., 14, 1524-1528, (1980)
14. Grathwohl, P., “Influence of Organic Matter from Soils and Sediments from Various Organicon the Sorption of Some Chlorinated Aliphatic Hydrocarbons : Implications on Koc Correlations.”, Environ. Sci. Technol, 24, 1687-1693, (1990)
15. Murphy, E.M.; Zachara, J.M.; and Smith, S.C., “Influence of Mineral-Bound Humic Substances on the Sorption of Hydrophobic Organic Compounds.”, Environ. Sci. Technol., 24, 1507-1516, (1990)
16. Xing, B.; McGil, B.; and Dudas, M.J., “Sorption of α-Naphthol onto Organic Sorbents Varying in Polarity and Aromaticity.”, Chemosphere, 28, 145-153, (1994)
17. Ruthven, D. M., “Principles of Adsorption and Adsorption Process”, John Wiley & Sons (1984).
18. Brunauer, S., L. S. Deming, W. S. Deming, and E. Teller, J. Am. Chem.Soc., 62, pp.1723 (1940).
19. IUPAC Manual of Symbols and Terminology, Appendix 2, Pt. 1, Colloid and Surface Chemistry, Pure Appl. Chem. 31, 578 (1972).
20. 楊逸禎,“土壤無機相對有機污染物吸附特性之研究”,碩士論文,國立中央大學環境工程研究所,(2007)
21. Boyd ,S. A.;Lee ,J.F.;Mortland ,M.M. , “Attenuating Organic Contaminant Obility by Soil Modification.”, Nature, 333, 345-347,(1988)
22. Potgieter, J. H.; Potgieter-Vermaak, S. S.; and Kalibantonga, P. D., ” Heavy Metals Removal from Solution by Palygorskite clay.”, Minerals Engineering, 19, 463-470, (2006)
23. He, C., Zhang, F., Yue, L., Shang, X., Chen, J., Hao, Z.,” Nanometric palladium confined in mesoporous silica as efficient catalysts for toluene oxidation at low temperature”, Applied Catalysis B, 111– 112, 46– 57, (2012)
24. Bruce, T. “Process to remove protein and other biomolecule from tobacco extract or slurry”, US patent 20060037620, Feb 23,( 2006)
25. Liu, C., Tang, T., Huang, B., “Zirconocene catalyst well spaced inside modified montmorillonite for ethylene polymerization: role of pretreatment and modification of montmorillonite in tailoring polymer properties”, Journal of Catalysis 221, 162–169.( 2004)
26. Sayilkan, H., Erdemoglu, S., Sener, S., Ayilkan, F., Akarsu, M., Erdemoglu, M.,” Surface modification of pyrophyllite with amino silane coupling agent for the removal of 4-nitrophenol from aqueous solutions”. Journal of Colloid and Interface Science 273, 530–538. (2004)
27. Pinnavaia, T.J., Tzou, M.S., Landau, S.D., Raythatha, R.H.,” On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum”. Journal of Molecular Catalysis 27, 195–212(1984)
28. Occelli, M.L., Lynch, J., Senders, J.V., “TEM analysis of pillared and delaminated hectorite catalysts”. Journal Catalysis 107, 557–565(1987)
29. Donald L.Sparks著,王明光譯, “環境土壤化學’’,五南圖書,2000。
30. 黃怡禎, “礦物學”,地球科學文教基金會,520-535,2000。
31. Gładysz-Płaska, A., Majdan, M., Pikus, S., Sternik, D.,” Simultaneous adsorption of chromium(VI) and phenol on natural red clay modified by HDTMA”,Chemical Engineering Journal ,179 ,140– 150, (2012)
32. Huang, Y., Ma, X., Liang, G., Yan, Y., Wang, S.,” Adsorption behavior of Cr(VI) on organic-modified rectorite”, Chemical Engineering Journal, 138 ,187–193, (2008)
33. Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim. A. Y. and Gong, M. L., “Hybrid Mesoporous Materials with Functionalized Monolayers”, Adv. Mater., 10, 161-165 (1998).
34. Guimarães , M.F. , Virgínia Sampaio T. Ciminelli , Wander Luiz Vasconcelos,” Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions”, Applied Clay Science 42 ,410–414, (2009)
35. Mercier, L., J.Pinnavaia, T.,“A functionalized porous clay heterostructure for heavy metal ion (Hg2+) trapping“,Microporous and Mesoporous Materials 20, 101-106(1998)
36. Georig, A.; Schierz, A.; Trommler, U.; Horwitz, C.P.; Collins, T.J.; and Kopinke, F.D., “Humic Acid Modified Fenton Reagent for Enhancement of the Working pH Range.”, Applied Catalysis B:Environmental, 72, 26-36, (2007)
37. Gabriel, J.; Shah, V.; Nesmerak, K.; Baldrian, P.; and Nerud, F., “Degradation of Polycyclic Aromatic Hydrocarbons by the Copper(II)-Hydrogen Peroxide System.”, Folia Microbiologica, 45, 573-575, (2000)
38. Baldrian, P.; Cajthaml, T.; Merhautová, V.; Gabriel, J.; Nerud, F.; Stopka, P.; Hruby´, M.; and Benesˇ, M.J., “Degradation of Polycyclic Aromatic Hydrocarbons by Hydrogen Peroxide Catalyzed by Heterogeneous Polymeric Metal Chelates.”, Applied Catalysis B: Environmental, 59, 267-274, (2005)
39. Gabriel, J.; Baldrian, P.; Verma, P.; Cajthaml, T.; Merhautová, V. and Eichlerová, I.; Stoytchev, I.; Trnka, T.; Stopka, P.; and Nerud, F., “Degradation of BTEX and PAHs by Co(II) and Cu(II)-Based Radical-Generating Systems.”, Applied Catalysis B:Environmental, 51, 159-164, (2004)
40. Lu, C.Y.; Tseng, H.H.; Wey, M.Y.; Liu, L.Y.; Kuo, J.H.; and Chuang, K.H., “Al2O3-Supported Cu-Co Bimetallic Catalysts Prepared with Polyol Process for Removal of BTEX and PAH in the Incineration Flue Gas.”, Fuel, 88, 340–347, (2009)
41. Nerud, F.; Baldrian, P.; Gabriel, J.; and Ogbeifun, D., “Decolorization of Synthetic Dyes by the Fenton Reagent and the Cu/Pyridine/H2O2 System.”, Chemosphere, 44, 957-961, (2001)
42. Shah, V.; Verma, P.; Stopka, P.; Gabriel, J.; Baldrian, P.; and Nerud, F., “Decolorization of Dyes with Copper(II)/Organic Acid/Hydrogen Peroxide Systems.”, Applied Catalysis B: Environmental, 46, 287–292, (2003)
43. Verma, P.; Shah, V.; Baldrian, P.; Gabriel, J.; Stopka, P.; Trnka, T.; and Nerud, F., “Decolorization of Synthetic Dyes Using a Copper Complex with Glucaric Acid.”, Chemosphere, 54 , 291–295, (2004)
44. 謝育甄,“多孔性吸附介質之表面改質及其對有害重金屬吸附之研究”,碩士論文,國立中央大學環境工程研究所,(2011)
45. Wang, X.S.; and Qin, Y., “Equilibrium Sorption Isotherms for of Cu2+ on Rice Bran.”, Process Biochemistry, 40, 677-680(2005)
46. Wu, J.K.; and Hsu, Y.S., “Electrochemical Corrosion of Zinc in Sodium Chlorite.”, Journal of Materials Science, 21, 3475-3478, (1986)
47. Weast, R.C.; Astle, M.J.; and Beyer, W.H., “CRC Handbook of CHEMISTRY and PHYSICS”, 68th Ed, CRC Press, Inc., Boca Raton, Florida, (1988)
48. Shanmugharaj, A.M., Rhee, K.Y., Ryu, S.H.,” Influence of dispersing medium on grafting of aminopropyltriethoxysilane in swelling clay materials”. Journal of Colloid and Interface Science 298, 854–859(2006)
49. Bois, L., Bonhommé, A., Ribes, A., Pais, B., Raffin, G., Tessier, F., “Functionalized silica for heavy metal ions adsorption”, Colloids and Surfaces 221, 221–230(2003)
50. Fonseca, M.G., Airoldi, C., “Mercaptopropyl magnesium phyllosilicate — thermodynamic data on the interaction with divalent cations in aqueous solution”, Thermochimica Acta 359, 1–9( 2000)
51. Coates, J., Interpretation of infrared spectra, a practical approach. In: Meyers, A. (Ed.), Encyclopedia of Analytical Chemistry. John Wiley & Sons Ltd., Chichester, 10815–10837(2000)
52. Guimarães, A., Virgínia Sampaio T. Ciminelli , Wander Luiz Vasconcelos,” Smectite organofunctionalized with thiol groups for adsorption of heavy metal ions”, Applied Clay Science,42 , 410–414 (2009).
53. Saygideger, S.; Gulnaz, O.; Istifli, E.S.; Yuxel, N.,” Adsorption of Cd( Ⅱ ), Cu( Ⅱ ) and Ni( Ⅱ ) ions by Lemna minor L effect of physicochemical environment”, J. Hazard. Mater. 126, 96-104(2005)
54. Trivedi, P.; Axe, L.; and Dyer, J., “Adsorption of Matel Ions onto Goethite : Singe–Adsorbate and Competitive Systems.”, A: Physicochemical and Engineering Aspects, 191, 107–121, (2001)
55. M. Okazaki, K. Takamidoh , I .Yamane, Soil Sci. Plant Nutr.32 (4) 523-533(1986)
56. Ahrland, S.; Chatt, j.; Davies, N. R., Chem. Soc. Review 12, 265(1958)
57. Fontes, M.P.F.; and Gomes, P.C., “Simultaneous Competitive Adsorption of Heavy Metals by the Mineral Matrix of Tropical Soils.”, Applied Geochemistry, 18, 795–804, (2003)
58. Abollion, O.; Aceto, M.; Malandrino, M.; Sarzanini, C.; and Mentasti, E., “Adsorption of Heavy Metals on Na-montmorillonite. Effect of pH and Organic Substances.”, Water Research, 37, 1619-1627, (2003)
59. Lin, S.H.; and Juang, R.S., “Heavy Metal Removal from Water by Sorption using Surfactant-Modified Montmorillonite.”, Journal of Hazardous Materials, 92, 315-326, (2002)
60. Abbas H. Sulaymon, Balasim A. Abid, Jenan A. Al-Najar,” Removal of lead copper chromium and cobalt ions onto granular activated carbon in batch and fixed-bed adsorbers”, Chemical Engineering Journal 155 , 647–653(2009)
61. E. Erdem , N. Karapinar , R. Donat,” The removal of heavy metal cations by natural zeolites”, Journal of Colloid and Interface Science 280, 309–314(2004)
62. Xua, F., Lianga, X., Lina, B., Schrammb,K.W., Kettrupb, A., “Estimation of soil organic partition coefficients: from retention factors measured by soil column chromatography with water as eluent” Journal of Chromatography A, 968, 7–16(2002)
63. Lee, J.F.; Chang, Y.T.; Chao, H.P.; Huang, H.C.; and Hsu, M.H., “Organic Compound Distribution between Nonionic Surfactant Solution and Natural Solids : Applicability of a Solution Property Parameter.”, Journal of Hazardous Materials, 129, 282-289 (2006)
64. C. He, P. Li, J. Cheng, H.L. Wang, J.J. Li, Q. Li, Z.P. Hao, “Synthesis and characterization of Pd/ZSM-5/MCM-48 biporous catalysts with superior activity for benzene oxidation”,Appl. Catal. A Gen. 382, 167–175(2010)
65. T. Garcia, B. Solsona, D.M. Murphy, K.L. Antcliff, S.H. Taylor,” Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts”, J. Catal. 229, 1–11(2005)
66. Garcia T, Solsona B, M. Murphy D, Karen L. Antcliff, Stuart H. Taylor,” Deep oxidation of light alkanes over titania-supported palladium/vanadium catalysts”, Journal of Catalysis 229, 1–11(2005)
指導教授 李俊福(JIUNN-FWU LEE) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明