博碩士論文 943403029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.217.224.194
姓名 蔡秉蒼(Bin-Tsang Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 應用金屬發泡材為流道之質子交換膜燃料電池之研究
(A PEM Fuel Cell with Metal Foam as Flow Distributor)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 第一部份,我們說明了在質子交換膜燃料電池中使用金屬發泡材取代流場的實驗結果。這些實驗結果表明,質子交換膜燃料電池使用金屬發泡材為流場的重要特點,是比一般石墨板燃料電池更能提升電池的性能。實驗中比較了不同性質的金屬發泡材與石墨板燃料電池間的極化曲線。文中將說明質子交換膜燃料電池用金屬發泡材為流道所具有的特點。
由於金屬發泡材的高孔隙率(可達80 %以上),質傳限制的現象並不像在傳統的質子交換膜燃料電池上明顯。另一個有趣的現象是,發泡材金屬的導電性能扮演著重要的角色,這個現象很少出現在傳統的質子交換膜燃料電池。雖然有一些技術上的挑戰,例如;取代金屬發泡材流道板。但金屬發泡材其獨特的質傳現象,加上其重量輕,使得金屬發泡材在燃料電池上的應用具有非常大的吸引力。
第二部份,我們報告如何藉由流場設計促進使用金屬發泡材為流道之質子交換膜燃料電池的性能。這些研究結果可以讓我們能更深入了解金屬發泡材的流場分布對於電池性能的影響。我們使用各種不同的金屬發泡材流場並將其極化曲線與傳統石墨雙極板燃料電池之極化曲線比較。實驗結果顯示,使用改良之金屬發泡材流場可提升燃料電池之性能。數種金屬發泡材流場設計與其特點在本文內有詳細的分析。
因為氣體流動會受入口設計與發泡材的幾何外型所限制,不同的流場設計會影響到流動模式。我們的研究指出使用單區的金屬發泡材燃料電池,對流效果在角落會較低。將金屬發泡材劃分為多區域與使用多個入口後,能夠有效地增加氣體之分散與傳輸。本研究同時也利用交流阻抗儀測量金屬發泡材燃料電池的阻抗特徵。由奈奎斯特圖與波德圖可證實金屬發泡材燃料電池的各項阻抗 (歐姆阻抗、活化阻抗與質傳阻抗) 皆小於傳統的石墨雙極板燃料電池者。
摘要(英) First, the experimental results of the PEM fuel cell with metal foam as flow distributor will be reported. These experimental results show the characteristics of the PEM fuel cell with the metal foam as flow distributor and extend our understanding of the relation between cell performance and mass transport properties into a region of parameters that the conventional PEM unit cell can not provide. The comparison in polarization curve is made between the PEM unit cell with different metal-foam properties and the PEM unit cell with graphite flow channel plate as flow distributor. The experimental results show that the PEM fuel cell with metal foam as flow distributor possesses some unique characteristics compared with the conventional PEM unit cell with flow channel plate as flow distributor.
Due to the high porosity of metal-foam (over 80 %) plus convective flow through the metal-foam, mass transport limitation phenomenon is not as pronounced as in the case of conventional PEM unit cell with flow channel plate as flow distributor. Another interesting phenomenon is that electrical conductivity of metal-foam plays a significant role in performance, which is seldom the case in the conventional PEM unit cell with flow channel plate as flow distributor. Although there are several technical challenges to be overcome for the current form of metal-foam to replace flow channel plates, the unique mass-transport properties of metal foam plus its light weight are very attractive.
In the second part, the improvements made on the PEM fuel cell with metal foam as the flow distributor are reported. The comparison in polarization curve is made between the PEM unit cell with different metal foam flow field designs and the PEM unit cell with graphite bipolar plate as flow distributor. The experimental results show that after using improved metal foam flow field designs, the fuel cell’s performance increases. Because the gas flow is limited by the flow inlet and the metal foam geometry, different flow field design will affect the flow pattern.
the results show that, in the PEM unit cell with single zone metal foam, convection is weak at side corners. Dividing the metal foam into multiple regions and using multiple inlets effectively increases the gas distribution. AC impedance measurement was also performed to study the impedance characteristics. The Nyquist and Bode plots confirmed that Ohmic resistance, activation resistance, and mass transfer resistance of metal foam fuel cell are all smaller than that of conventional PEM unit cell.
關鍵字(中) ★ 質子交換膜燃料電池
★ 金屬發泡材
★ 流場板
★ 交流阻抗儀
關鍵字(英) ★ Proton exchange membrane fuel cell
★ AC impedance.
★ Metal foam
★ Mass transport. Flow distributor
論文目次 授權書 ii
推薦書 iii
審定書 iv
中文摘要 v
ABSTRACT vii
致謝 ix
目錄 xi
圖目錄 xiv
表目錄 xviii
符號說明 xx
第 一 章 緒論 1
1.1. 前言 1
1.2. 燃料電池運作原理 7
1.3. 質子交換膜燃料電池的各部構造 9
1.4. 燃料電池的極化現象 18
1.5. 電化學交流阻抗(EIS)基本原理 21
1.6. 金屬發泡材燃料電池基本設計敘述 25
1.7. 燃料電池堆市場分析 27
1.8. 研究目的 32
第 二 章 文獻回顧 35
2.1. 燃料電池相關文獻回顧 35
2.2. 金屬發泡材 53
2.3. 金屬多孔材的物理性質 54
2.4. 金屬發泡材在燃料電池的文獻回顧 58
2.5. 電化學交流阻抗文獻回顧 61
第 三 章 實驗方法與實驗設備 67
3.1. 燃料電池材料與規格 68
3.2. 孔隙分析儀量測技術 71
3.3. 疏水性 72
3.4. 交流阻抗分析 73
3.5. 燃料電池測試台 75
3.6. 操作條件簡介 80
第 四 章 結果與討論 81
4.1. 發泡材疏水性對性能影響之比較 81
4.2. 氣體滲透率對性能影響 86
4.3. 表面處理對性能影響 94
4.4. 流場設計對電池性能之影響 99
4.5. 流場設計對空氣利用率之影響 103
4.6. 流場設計對壓降之影響 105
4.7. 化學計量比對電池性能的影響 107
4.8. 區域化流場在不同操作壓力下之電池性能表現 109
4.9. 金屬發泡材流場之電化學分析 111
4.10. 長時間測試結果 117
4.11. 電堆測試結果 121
第 五 章 結論 127
第 六 章 未來目標 130
參考文獻 131
附錄 143
附錄一 143
附件二 149
個人簡介 150
參考文獻 K. Kordesch and G. Simader, Fuel Cells and Their Applications., VCH., New York, 1996
[ ]. W. Mitchell Jr., Fuel Cells a Series of Monographs., Academic Press., New York, 1963
[ ]. E. Hontañón, M.J. Escudero, C. Bautista, P.L. Garcı́a-Ybarra, L. Daza, “Optimisation of flow-field in polymer electrolyte membrane fuel cells using computational fluid dynamics technique,” Journal of Power Source, Vol. 86, pp. 363-368, 2001
[ ]. A. Kumar, R.G. Reddy, “Effect of channel dimensions and shapein the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” Journal of Power Source, Vol. 113, pp. 11-18, 2003
[ ]. http://www.daimlerchrysler.com/
[ ]. S. H. Chan, A. Su and F. B. Weng, “An Overview and Future Prospects of Taiwan’s Fuel Cell Development,” 2001 International Fuel Cell Symposium, June 21~22, 2001, Taipei, R.O.C, 2001,
[ ]. 尤如瑾,「燃料電池市場發展趨勢」,工研院IEK系統能源組,2006年3月。
[ ]. http://www.fuelcellisland.com/php/index.php?page=shop.product_details &flypage=shop.flypage&product_id=224&category_id=17&manufacturer_id=0&option=com_virtuemart&Itemid=41
[ ]. http://www.etatung.com.tw/TamisEIP/EIPData/9909/Products/Data/TSTI %20FC%20Product20DM.pdf
[ ]. http://apps1.eere.energy.gov/news/news_detail.cfm/news_id=11974
[ ]. M.V. Williams, E. Begg, L. Bonville, H. Russell–Kunz, “Characterization of Gas Diffusion Layers for PEMF,” Journal of The Electrochemical Society, Vol. 151, A1173–A1180, 2004
[ ]. H. Tawfik, Y. Hunga, D. Mahajan, “Metal bipolar plates for PEM fuel cell-A review,” Journal of Power Sources, Vol. 163, pp.755–767, 2007
[ ]. E. Middelman, W. Kout, B. Vogelaar, J. Lenssen, E. de–Waal, “Bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 118, pp.44–46, 2003
[ ]. 黃鎮江,「燃料電池」,全華科技股份有限公司,民國九十四年
[ ]. E. Barsoukov, J. R. Macdonald (2nd Eds), Impedance Spectroscopy: Theory, Experiment, and Application, John Wiley&Sons., Inc., 2005
[ ]. http://www.ballard.com/resources/carbon fiber/AvCarbCFP.pdf (retrieved date: November 20, 2004).
[ ]. F. R. Kalhammer, P. R. Prokopius, V. P. Roan, and G.E. Voecks, “Status and Prospects of Fuel Cells as Automobile Engines,” A report of the fuel cell technical advisory panel, prepared for state of California Air Resources Board, Sacramento, CA, 1998
[ ]. 蔡年生,「固體聚合物電解質燃料電池中的水平衡」, 電源技術, Vol. 20, No. 3, pp.128, 1996
[ ]. A. S. Arico, P. Creti, V. Baglio, E. Modica, V. Antonucci, “Influence of flow field design on the performance of a direct methanol fuel cell,” Journal of Power Sources, Vol. 91, pp 202-209, 2000
[ ]. M. kunimatsu, T. Shudo, Y. Nakajima, “Study of performance improvement in a direct methanol fuel cell,” JSAE Review, Vol. 23, pp. 21-26, 2002
[ ]. E. Gulzow, T. Kaz, R. Eeissner, H. Sander, L. Schilling, M. V. Bradke, “Study of membrane electrode assemblies for direct methanol fuel cells,” Journal of Power Sources, Vol. 105, pp. 261-266, 2002
[ ]. Y. G. Yoon, W. Y. Lee, T. H. Yang, G. G. Park, C. S. Kim, “Current distribution in a single cell of PEMFC,” Journal of Power Sources, Vol. 118, pp 193-199, 2003
[ ]. 羅世坤, 「流場設計對質子交換膜燃料電池性能之研究」, 國立中央大學機械研究所碩士論文, 桃園, 2003
[ ]. Y. G. Yoon, W. Y. Lee, G. G. Park, T. H. Yang, C. S. Kim, “Effects of channel and rib widths of flow field plates on the performance of a PEMFC,”International Journal of Hydrogen Energy, Vol. 30, pp. 1363-1366, 2005
[ ]. S. Shimpalee, S. Greenway, J. W. Van Zee, “The impact of channel path length on PEMFC flow-field design,”Journal of Power Source, Vol. 160, pp. 398-406, 2006
[ ]. 蒲瑞台, 「定開孔率下流道設計與疏水流場對質子交換膜燃料電池之性能影響」, 國立中央大學能源工程研究所碩士論文, 桃園, 2007
[ ]. V. Mehta, J. S. Cooper, “Review and analysis of PEM fuel cell design and manufacturing,” Journal of Power Sources, Vol. 114, pp.32-53, 2003
[ ]. C. Lim, C. Y. Wang, “Development of high-power electrodes for a liquid-feed direct methanol fuel cell,” Journal of Power Sources, Vol. 113, pp. 145-150, 2003
[ ]. J. M. Song, S. Y. Cha, W. M. Lee, “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method,” Journal of Power Sources, Vol. 114, pp.78-84, 2001.
[ ]. E. Passalacqua, F. Lufrano, G. Squadrito, A. Patti, L. Giorgi, “Nafion content in the catalyst layer of polymer electrolyte fuel cell: effects on structure and performance,” Electrochimica Acta, Vol. 46, pp.799-805, 2001
[ ]. L. R. Jordan, A. K. Shukla, T. Behrsing, N. R. Avery, B. C Muddle, M Forsyth, “Diffusion layer parameters influencing optimal fuel cell performance,” Journal of Power Sources, V. 86, pp. 250-254, 2000
[ ]. Y. G. Yoon., G. G. Park, T. H. Yang, J. N. Han, W. Y. Lee, C. S. Kim, “Effect of pore structure of catalyst layer in a PEMFC on its performance,” International Journal of Hydrogen Energy, Vol. 28, pp. 657-662, 2003
[ ]. J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-field configuration: influence on the performance of a PEMFC,” Journal of Power Sources, Vol. 118, pp. 172-178, 2003
[ ]. M. Noponen, T. Mennola, M. Mikkola, T. Hottien, P. Lund, “Measure of current distribution in a free-breathing PEMFC,” Journal of Power Sources, Vol. 116, pp. 304-312, 2002
[ ]. Z. Wei, S. Wang, B. L. Yi, “Influence of electrode structure on the performance of a direct methanol fuel cell,” Journal of Power Source, Vol. 106, pp. 364-369, 2002,
[ ]. S. Y. Ahn, S. J. Shin, “Performance and lifetime analysis of the kW-class PEMFC stack,” Journal of Power Sources, Vol. 106, pp 295-303 , 2002
[ ]. T. Ioroi, T. Oku, K. Yasuda, N. Kumagai, Y. Miyazaki, “Influence of PTFE coating on gas diffusion backing for unitized regenerative polymer electrolyte fuel cell,” Journal of Power Sources, Vol. 124, pp. 385-389, 2003
[ ]. P. M. Wilde, M. Mändle, M. Murata, and N. Berg, Structure and Physical Properties of GDL and GDL/BPP Combinations and their Influence on PEMFC Performance., WILEY-VCH Verlag GmbH & Co. KGaA., Weinheim, Vol. 4, No. 3, pp.180-184, 2004
[ ]. J. Ihonen, M. Mikkola, and G. Lindbergh, “Flooding of Gas Diffusion Backing in PEFCs Physical and Electrochemical Characterization,” Journal of The Electrochemical Society, Vol. 151, No. 8, pp. A1152-A1161, 2004
[ ]. J. Wind, R. Späh, W. Kaiser, G. Bo‥hm, “Metallic bipolar plates for PEM fuel cells,” Journal of Power Sources, Vol. 105, pp. 256-260, 2002
[ ]. A. Kumar, R. G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol. 114, pp. 54-62, 2003
[ ]. F. Jaouen, G. Lindbergh, and G. Sundholm, “Investigation of Mass-Transport Limitations in the Solid Polymer Fuel Cell Cathode I. Mathematical Model,” Journal of The Electrochemical Society, Vol. 149, pp. A437-A447, 2002
[ ]. N. P. Siegle, M. W. Ellis, D. J. Nelson, M. R. von Spakovsky, “Single domain PEMFC model base on agglomerate catalyst geometry,” Journal of Power Sources, Vol. 115, pp. 81-89, 2003
[ ]. R. Bradean, K. Promislow, B. Wetton, “Performance Modeling of a Direct Methanol Fuel Cell,” Numerical Heat Transfer Part A, Vol.42, pp. 121-138, 2002
[ ]. J. Divisek, J. Fuhrrmann, K. Gartner, R. Jung, “Performance Modeling of a Direct Methanol Fuel Cell,” Journal of The Electrochemical Society, Vol. 150, pp. A811-A825, 2003
[ ]. H. S. Chu, C. Yeh, F. Chen, “Effect of porosity change of gas diffuser on performance of proton exchange membrane fuel cell,” Journal of Power Sources, Vol. 123, pp.1-9, 2003
[ ]. K. Tuber, D. Pocza, C. Hebling, “Visualization of water buildup in the cathode of a transparent PEM fuel cell,” Journal of Power Sources, Vol. 124, pp.403-414, 2003
[ ]. Z. X. Liu, Z. Q. Mao, B. Wu, L. S. Wang, V. M. Schmidt, “Current density distribution in PEFC,” Journal of Power Sources, Vol. 141, pp.205-210, 2005
[ ]. H. Yang, T. S. Zhao, “Effect of anode flow filed design on the performance of liquid feed direct methanol fuel cells,” Electrochimical Acta, Vol. 50, pp. 3243-3252, 2005
[ ]. H. Yang, T.s. Zhao, Q. Ye, “Pressure drop behavior in the anode flow filed of liquid feed direct methanol fuel cells” Journal of Power Sources, Vol. 142, pp.117-124, 2005
[ ]. M. M. Mench, S. Boslet, S. Thynell, J. Scott, and C. Y. Wang, “Experiment study of a direct methanol fuel cell,” 2001
[ ]. S. Hikita, K. Yamane, Y. Nakajima, “Measurement of methanol crossover in direct methanol fuel cell,” JSAE Review, Vol. 22, pp. 151-156, 2001
[ ]. S. Hikita, K. Yamane, Y. Nakajima, “Influence of cell pressure and amount of electrode catalyst in MEA on methanol crossover of direct methanol fuel cell,” JSAE Review, Vol. 23, pp. 133-135, 2002
[ ]. H. I. Lee, C. H. Lee , T. Y. Oh, “Development of 1kW class polymer electrolyte membrane Fuel cell power generation system,” Journal of Power Sources, Vol. 107, pp. 110-119, 2002
[ ]. V. A. Paganin, E. A. Ticianelli, E. R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Source, Vol. 70, pp.55-58, 2001
[ ]. D. Buttin, M. Dupont, M. STRAUMANN, R. GILLE, J. C. DUBOIS, R. ORNELAS, G. P. FLEBA, E. RAMUNNI, V. ANTONUCCI, A. S. ARICOÁ, P. CRETIÁ, E. MODICA, M. PHAM-THI and J. P. GANNE, “Development and operation of a 150 W air-feed direct methanol fuel cell stack,” Journal of Applied electrochemistry, Vol. 31, pp. 275-279, 2001
[ ]. R. Z. Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” Journal of Power Sources, Vol. 93, pp. 25-31, 2001
[ ]. R. Z. Jiang, D. Chu, “Voltage time behavior of a polymer electrolyte membrane fuel cell stack at constant current discharge,” Journal of Power Sources, Vol. 92, pp. 193-198, 2001
[ ]. W. H. Zhu , R. U. Payne , D. R. Cahela and B. J. Tatarchuk, “ Uniformity analysis at MEA and stack Levels for a Nexa PEM fuel cell system,” Journal of Power Sources, Vol.128, pp. 231-238, 2004
[ ]. P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions,” Journal of Power Sources, Vol. 128, pp. 208-217, 2004
[ ]. Y. J. Sohn, G. G. Park, T. H. Yang, Y. G. Yoon, W. Y. Lee, S. D. Yim and C. S. Kim, “Operating characteristics of an air-cooling PEMFC for portable applications,” Journal of Power Sources, Vol. 145, pp. 604-609, 2005
[ ]. http://www.ergaerospace.com/index.htm
[ ]. C. KÕmer, R. F. Singer, “Processing of Metal Foams-Challenges and Opportunities,” Advanced Engineering Materials, Vol. 2, pp. 159-165, 2000,
[ ] A. Bhattacharya, V. V. Calmidi, R. L. Mahajan, “Thermophysical properties of high porosity metal foams,” International Journal of Heat and Mass Transfer, Vol. 45, pp.1017-1031, 2002
[ ] V. Paserin, S. Marcuson, J. Shu, D. S. Wilkinson, “CVD technique for Inco nickel foam production,” Advanced engineering materials, Vol. 6, pp. 454-459, 2004
[ ]. P. Khayargoli, V. Loya, L.P. Lefebvre, M. Medrj, “The impact of micro-structure on the permeability of metal foam,” pp. 220-228, CSME Forum 2004
[ ] E. Hontanon, M. J. Escudero, C. Bautista, P.L. Garcia-Ybarra, L, Daza, “Optimisation of flow-field in polymer electrolyte membrane fuell cells using computational fluid dynamics techniques,” Journal of Power Sources, Vol. 86, pp. 363-368, 2000
[ ] K. Scott, P. Argyropoulos, P. Yiannopoulos, W. M. Taama, “Electrochmical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds,” Jounal of Power Sources, Vol. 31, pp. 823-832, 2001
[ ] A. Kumar, R. G. Reddy, “Materials and design development for bipolar/end plates in fuel cell,” Journal of Power Sources, Vol. 129, pp. 62-67, 2004
[ ] S. Arisetty, A. K. Prasad, G. Advani, “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp. 45-57, 2007
[ ] 蔡秉蒼,曾重仁, 「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆全國氫能與燃料電池學術研討會,FC043, 國立台南大學, 2008。
[ ] 陳孟怡, 「金屬發泡材質子交換膜燃料電池之研究」, 國立中央大學機械工程學系碩士論文, 桃園, 2009。
[ ]. T. J. P. Freire, E. R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,” Journal of Electroanalytical Chemistry, Vol. 503, pp. 57-68, 2001
[ ]. J. M. Song, S. Y. Cha, W. M. Lee, “Optimal composition of polymer electrolyte fuel cell electrodes determined by the AC impedance method,” Journal of Power Sources, Vol. 94, pp. 78-84, 2001
[ ]. J. D. Kim, Y. I. Park, K. Kobayashi, M. Nagai, M. Kunimatsu, “Characterization of CO tolerance of PEMFC by ac impedance spectroscopy,” Solid State Ionics, Vol. 140, pp. 313-325, 2001
[ ]. M. Ciureanu, S. D. Mikhailenko, S. Kaliaguine, “PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy,” Catalysis Today, Vol. 82, pp. 195-206, 2003
[ ]. E. B. Easton, P. G. Pickup, “An electrochemical impedance spectroscopy study of fuel cell electrodes,” Electrochim. Acta, Vol. 50, pp. 2469-2474, 2005
[ ]. S. S. Hsieh, S. H. Yang, C. L. Feng, “Characterization of the operational parameters of a H2/air micro PEMFC with different flow fields by impedance spectroscopy,” Journal of Power Sources, Vol. 162, pp. 262-270, 2006
[ ]. X. Yuan, J. C. Sun, M. Blanco, H. Wang, J. Zhang, D. P. Wilkinson, “AC impedance diagnosis of a 500 W PEM fuel cell stack: Part I: Stack impedance,” Journal of Power Sources, Vol. 161, pp. 920-928, 2006
[ ]. X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kWPEM fuel cell stack under different operating conditions and load changes,” International Journal of Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007
[ ]. S. Wasterlain, D. Candusso, D. Hissel, F. Harel, P. Bergman, P. Menard, M. Anwar, “Study of temperature, air dew point temperature and reactant flow effects on proton exchange membrane fuel cell performances using electrochemical spectroscopy and voltammetry techniques,” Journal of Power Sources, Vol. 195, pp. 984-993, 2010
[ ]. Q. Dong, M.M. Mench, S. Cleghorn, U. Beuscherb, “Distributed performance of polymer electrolyte fuel cells under low–humidity conditions,” Journal of The Electrochemical Society, Vol. 152, pp. A2114-A2122, 2005
[ ]. http:/www.pmiapp.com/products, 2008
[ ]. http:/www.gore.com/technology/, 2005
[ ]. http://www.echemsw.com/ (Retrieved date: March , 2004)
[ ]. 鄭錕燦,邱耀輝,「質子交換膜燃料電池氣體擴散層及流道板電阻之探討」,中國機械工程學會第十八屆全國學術研討會論文集,第一冊 熱流與能源,pp. 529-534, 2001
[ ]. http://www.gold9999.biz/html-h3.htm
[ ]. Vielstich W, Lamm A, Gasteiger H. A, Handbook of fuel cells, Vol. 2. Wiley., New York, 2003
[ ]. X. Yuan, H. J Wang, J. C. Sun, J. J. Zhang, “AC impedance technique in PEM fuel cell diagnosis—A review,” International Journal of Hydrogen Energy, Vol. 32, pp. 4365-4380, 2007
[ ]. J. Kang, J. Kim, “Membrane electrode assembly degradation by dry/wet gas on a PEM fuel cell,” International Journal of Hydrogen Energy, Vol. 35, pp. 13125-13130, 2010
[ ]. M. Ciureanu and R. Roberge, “Electrochemical impedance study of PEM fuel cells experimental diagnostics and modeling of air cathodes,” Journal of Physical Chemistry B, Vol. 105, pp. 3531-3539, 2001
指導教授 曾重仁、劉中生
(Chung-Jen Tseng、Zhong-Sheng Liu)
審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明