博碩士論文 993203082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.117.11.194
姓名 蘇崇瑋(Chung-wei Su)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微創椎弓根螺釘補強之最佳化分析
(Optimization analysis of strenthening invasive pedicle screw)
相關論文
★ 三次元量床之虛擬儀器教學與訓練系統之設計與開發★ 駕駛模擬器技術開發及其在駕駛行為研究之應用
★ 電源模組老化因子與加速試驗模型之研究★ 應用駕駛模擬器探討語音防撞警示系統 對駕駛行為之影響
★ 遠距健康監測與復健系統之開發與研究★ 藥柱低週疲勞特性與壽限評估模式之研究
★ 非接觸式電子經緯儀電腦模擬教學系統之研究★ 適應性巡航控制系統對於駕駛績效影響之研究
★ 車輛零組件路況模擬系統之開發研究★ 應用殘障駕駛模擬器探討失衡路況對人體重心影響之研究
★ 聚縮醛(POM)機械性質之射出成型條件最佳化研究★ 駕駛模擬儀之開發驗證及應用於駕駛疲勞之研究
★ 即時眼部狀態偵測系統之研究★ 短玻璃纖維強化聚縮醛射出成型條件最佳化與機械性質之研究
★ 手推輪椅虛擬實境系統開發之研究★ 應用駕駛績效預測車輛碰撞風險之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在老齡化的社會,脊椎疾病成為人類文明病之一,椎弓根螺釘為進行脊椎手術之基本原件,於手術中鎖入椎骨已提供固定源,使得脊椎系統穩定。隨著脊椎微創手術發展,為了配合導引針進行手術,傳統椎弓根螺釘逐漸被中空椎弓根螺釘取代,幾何形狀上由實心轉變成中空的螺釘。本研究先針對此兩種模型利用ANSYS套裝軟體以有限元素分析法比較應力上之差異;之後,並將同材質之Ti6Al4V插銷置入中空椎弓根螺釘中,進行強度補強之研究,探討此三種椎弓根螺釘(傳統、中空及中空置入插銷)之強度差異性。
此外,針對插銷置入中空孔之椎弓根螺釘模型,搭配田口品質工程法進行最佳化分析,將因子區分為椎弓根螺釘直徑5個水準、中空孔直徑3個水準、插銷間隙3個水準及插銷長度3個水準等四因子,探討各因子對於受力的椎弓根螺釘應力值之貢獻度,並找出模型之最佳化設計,最後進行驗證試驗以確定本研究之田口法使用是否正確。
最後,本研究參考文獻,建構出適用於本研究之微創用椎弓根螺釘之彎曲強度數學模性,並驗證其應力值與經有限元素分析之值是否呈現正相關,日後研究螺釘模型如與本研究相同,可於進行有限元素法之前先以此數學模型進行計算,可節省分析時間。
摘要(英) In this aging society, spinal disease becomes one of the common human civilization diseases. Pedicle screw is a fundamental part used in spinal surgery. We lock pedicle screw into the vertebrae to provide a fixed force to offer the stability of the human spine. With the development of the invasive spine surgery, traditional pedicle screw is replaced by cannular pedicle screw in order to be used in surgery with guide pin. In this study, firstly, we use the finite elements analysis method to compare the two models’ (tradional and cannular) difference in stress. Secondly, we put the same material (Ti6Al4V) of pin into the cannular pedicle screw to expect increasing pedicle screw’s intensity. And compare these three pedicle screws’ (traditional, cannular and cannular with pin) intensity in stress.
In addition, we use Taguchi method to do the optimization aimed at cannular pedicle screw with pin. The four factors include five levels of pedicle screw diameter, three levels of cannular diameter, three levels of clearance between pin and cannular pedicle screw and three levels of pin length. Explore the contribution of each factor for pedicle screw’s stress and find out the best model. At last, making the best model, and comparing it with other models to check the Taguchi method we use is correct.
At the last, consulting the reference to construct a mathematical model of bending strength of invasive pedicle screw, and compare its stress value with value of FEM. If it shows the positive correlation, we can use this model to calculate stress value before FEM to save analysis time in the fusture.
關鍵字(中) ★ 椎弓根螺釘
★ 田口品質工程法
★ 有限元素分析法
★ 脊椎微創手術
關鍵字(英) ★ pedicle screw
★ invasive spine surgery
★ finite element analysis
★ Taguchi method
論文目次 第一章 序論 1
1-1 研究背景 1
1-2簡介脊椎基本構造 2
1-2-1 椎骨 3
1-2-2椎間盤 4
1-2-3韌帶 5
1-3常見脊椎疾病 6
1-3-1 脊椎退化性關節疾病 6
1-3-2椎間盤突出 7
1-3-3骨質疏鬆症 7
1-3-4椎間滑脫症 8
1-4脊椎疾病治療方式 9
1-4-1保守方法 9
1-4-2局部手術 10
1-4-3大型手術 10
1-5脊椎融合術(Spinal Fusion Surgery) 10
1-5-1脊椎融合術介紹 10
1-5-2脊椎融合術之文獻回顧 11
1-6脊椎動靜態固定系統之發展 12
1-6-1靜態脊椎固定系統 12
1-6-2動態脊椎固定系統 13
1-6-3動態固定器之研究 15
1-7椎弓根螺釘 16
1-7-1椎弓根螺釘之幾何與材料介紹 16
1-7-2椎弓根螺釘之文獻回顧 18
1-8微創性手術 19
1-8-1微創脊椎融合術 19
1-8-2內視鏡椎間盤切除術 20
1-8-3微創置入脊椎固定系統 21
1-9研究動機與目的 21
1-10本文架構 22
第二章 材料與方法 24
2-1有限元素分析 24
2-1-1有限元素分析法基本介紹(Finite Element Method) 24
2-1-2有限元素分析法流程 25
2-1-3有限元素分析在生醫及脊椎方面之應用研究 26
2-2最佳化分析 26
2-2-1傳統多水準複因子實驗法 26
2-2-2田口法 30
2-2-3田口品質工程法之文獻回顧 33
第三章 研究流程 35
3-1分析模型建立 35
3-2有限元素分析 40
3-2-1材質設定 40
3-2-2網格分割設定 40
3-2-3接觸條件設定 42
3-2-4負載與拘束條件設定 44
3-2-5結果指標選用 44
3-3椎弓根螺釘之最佳化分析 45
3-4中空椎弓根螺釘之彎曲強度數學模型 48
第四章 結果與討論 53
4-1椎弓根螺釘之有限元素分析結果 53
4-1-1椎弓根螺釘之網格收斂性分析 53
4-1-2椎弓根螺釘有限元素分析之von Mises應力結果 55
4-1-3椎弓根螺釘有限元素分析之位移結果 62
4-1-4插銷之von Mises應力及位移結果 63
4-2中空椎弓根螺釘之最佳化分析結果 64
4-2-1田口法分析結果 64
4-2-2變異數分析 72
4-2-3各因子之最佳化設計 73
4-2-4 最佳化之驗證試驗 74
4-3彎曲強度數學模型計算結果 77
第五章 結論與未來展望 79
5-1結論 79
5-1-1椎弓根螺釘有限元素分析 79
5-1-2最佳化分析之結論 79
5-1-3中空椎弓根螺釘彎曲強度數學模型之結論 80
5-2未來展望 80
參考文獻 81
參考文獻 1. F. H. Netter, Atlas of human anatomy., 2nd edtion, Rittenhouse Book Distributors Inc., 1997.
2. 陳建良醫師. http://www.5791.net/hivd.htm.
3. 台灣脊椎中心. http://taiwanspinecenter.com.tw/tsc_c/index.htm.
4. 鮑醫師線上骨科診所. http://www.ispinecare.com/
5. 蘋果化妝箱. http://apple113.blogspot.tw/
6. M. H. Krag, “Biomechanics of thoracolumbar spinal fixation (A Review)”, Spine., Vol. 16(3), pp. S84-S97, 1991.
7. C. K. Lee. “Accelerated degeneration of the segment adjacent to a lumbar fusion”, Spine., Vol. 13, pp. 375-377, 1988
8. S. L. Weinhoffer, et al., “Intradiscal pressure measurements above aninstrumented fusion. A cadaveric study”, Spine., Vol. 20, pp. 526-531, 1995.
9. B. W. Cunningham, et al., “Biomechanical evaluation of total disc replacement arthroplasty: an in vitro human cadaveric model”, Spine., Vol. 28(20S), pp. S110-117, 2003.
10. G. Ghiselli, et al., “Adjacent segment degeneration in the lumbar spine”, Journal of Bone & Joint Surgery – American., Vol. 86-A, pp. 1497-1503, 2004.
11. M. Panjabi , et al., “Hybrid testing of lumbar charitediscs versus fusions”, Spine., Vol. 32, pp. 959-966, 2007.
12. Elite Surgical. http://www.elitesurgical.com/ .
13. C. Y. Barrey, et al., “Biomechanical evaluation of pedicle screw-based dynamic stabilization devices for the lumbar spine: A systematic review”, SAS Journal., Vol. 2(4), pp. 159-170, 2008.
14. Medtronic. http://www.mtortho.com/public/CDH_AGILE_ST_WE.pdf.
15. D. Grob, et al., “Clinical experience with the Dynesys semirigid fixation system for the lumbar spine: surgical and patient-oriented outcome in 50 cases after an average of 2 years”, Spine., Vol. 30, pp. 324-331, 2005.
16. C. A. Niosi, et al., “Biomechanical characterization of the three-dimensional kinematic behaviour of the Dynesys dynamic stabilization system: an in vitro study”, European Spine Journal., Vol. 15(6), pp. 913-922, 2006.
17. K. S. Delank, E. Gercek, S. Kuhn, et al., “How does spinal canal decompression and dorsal stabilization affect segmental mobility? A biomechanical study”, Archives of Orthopaedic & Trauma Surgery., Vol. 130, pp. 285-292, 2010.
18. B. C. Cheng, et al., “Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion”, Spine., Vol. 32(23), pp. 2551-2557, 2007.
19. Spine Update. http://spineupdate.blogspot.tw/
20. R. B. Ashman, et al., “Biomechanical analysis of pedicle screw instrumentation systems in a corpectomy model”, Spine., Vol. 14, pp. 1398-1405, 1989.
21. M. R. Zindrick, et al., “A biomechanical study of intrapeduncular screw fixation in the lumbosacral spine”, Clinical Orthopaedics and Related Research., Issue 203, pp. 99-112, 1986.
22. S. I. Esses, B.L. Sachs & V. Dreyzin, “Complications Associated with the Technique of Pedicle Screw Fixation A Selected Survey of ABS Members”, Spine., Vol. 18, pp. 2231-2238, 1993.
23. D. Pienkowski, et al., “Multicycle Mechanical Performance of Titinium and Stainless Steel Transpedicular Spine Implants”, Spine., Vol. 23 (7), pp.782-788, 1998.
24. J. A. Youssef, et al., "Characteristics of Pedicle Screw Loading: Effect of Sagittal Insertion Angle on Intrapedicular Bending Moments". Spine,, Vol. 24(11), pp. 1077, 1999.
25. K. Okuyama, et al., “Influence of Bone Mineral Density on Pedicle Screw Fixation:A Study od Pedicel Screw Fixation Augmenting Posterior Lumbar Interbody Fusion in Elderly Patients”, Spine., Vol. 1(6), pp.402-407, 2001.
26. C. K. Chao, et al., “Increasing bending strength and pullout strength in conical pedicle screw: biomechanical tests and finite element analyses”, Journal of Spinal Disorders & Techniques., Vol. 21, pp. 130-138, 2008.
27. 蘇芳正, 「椎弓足骨螺絲彎曲強度之生物力學測試與有限元素分析」,國立台灣大學, 碩士論文,2005.
28. J. C. Wang, V. Praveen & W.H. Regis, “Current Treatment Strategies for the Painful Lumbar Motion Segment”, Spine., Vol. 30, pp. S33-43, 2005.
29. 骨科衛教. http://www1.cgmh.org.tw/intr/intr2/c3270/F05-7.html
30. R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations", Bull. Amer. Math. Soc., Vol. 49 , pp. 1-23, 1943.
31. S. I. Chen, R.M. Lin & C.H. Chang, “Biomechanical investigation of pedicle screw-vertebrae complex: a finite element approach using bonded and contact interface conditions”, Medical Engineering & Physics., Vol. 25(4), pp. 275-282, 2003.
32. T. Lodygowski, et al., Three-dimensional nonlinear finite element model of the human lumbar spine segment”, Acta of Bioengineering and Biomechanics., Vol. 7(2), pp. 29-37, 2005.
33. W. H. Yang and Y.S. Tarng , “Design Optimization of Cutting Parameters for Turning Operations Based on the Taguchi Method”, Journal of Materials Processing Technology., vol. 84, pp. 122-129, 1998.
34. 黃華邦,黃永宏和鄭博文,「由水火箭實驗了解整合六標準差手法之田口實驗設計」,中華民國品質學會第40屆年會暨第10 屆全國品質管理研討會論文集,C1-10, pp. 94-105, 2004。
35. H. Oktem, T. Erzurumlu & I. Uzman, “Application of Taguchi optimization technique indeterming plastic injection molding process parameter for a thin-shall part”, Materials & Design., Vol. 28, pp. 1271-1278, 2007.
36. A. Rohlmann, F. Graichen & G. Bergmann, “Influence of load carrying on loads in internal spinal fixators”, Journal of Biomechanics, Vol. 33, pp. 1099-1104, 2000.
37. T. O. McKinley, et al., “The effect of pedicle morphometry on pedicle screw loading. A synthetic model”, Spine., Vol. 22(3), pp. 246-252, 1997.
指導教授 黃俊仁(Jiun-Ren Huang) 審核日期 2012-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明