博碩士論文 983206016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.149.239.136
姓名 黃韋閔(Wei-Min Huang)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 超濾薄膜積垢模式理論分析與驗證之研究
(Theoretical Analysis and Verification of the Fouling Model for Ultrafiltration)
相關論文
★ 石油碳氫化合物污染場址健康風險評估之研究★ 混合式厭氧反應槽之效能探討
★ 新型改質矽藻土應用於吸附實廠含銅廢水之探討★ 焚化底渣特性及其再利用管理系統之研究
★ 焚化底渣水洗所衍生廢水特性及處理可行性研究★ 工業廢水污泥灰渣特性及其再利用於水泥砂漿之研究
★ 純氧活性污泥法處理綜合性工業廢水之研究★ 零價鐵技術袪除三氯乙烯之研究
★ 零價鐵反應牆處理三氯乙烯污染物之反應行為研究★ 預臭氧程序提升綜合性工業廢水生物可分解性之研究
★ 下水污泥灰渣應用於銅離子去除之初步探討★ 纖維材料對於污泥灰渣砂漿工程性質之影響
★ 纖維床生物反應器祛除甲苯與三氯乙烯之研究★ 下水污泥灰渣特性及應用於水泥 砂漿之研究
★ 以Microtox檢測方法評估實際廢水生物毒性之研究★ 化學置換程序回收氯化銅蝕刻廢液之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主要目的包含:(1)藉由理論分析Hermia修正模式,了解參數對超過率通量趨勢之影響;(2)藉由實驗了解不同微粒粒徑(62、99、130和280nm)和飼水濃度(50、100和200mg/L)以及不同操作壓力(2、3和4kg/cm2)和掃流速度(0.01、0.03和0.05m/s)對超濾薄膜效能的影響;(3)藉由模擬並驗證Hermia修正模式以了解超過濾程序之積垢機制。
理論分析結果顯示,各積垢模式常數對單位時間通量變化影響顯著,隨常數提高呈線性增加趨勢,可作為判斷各積垢嚴重程度之指標。
實驗結果顯示,初始通量衰減速率隨粒徑減少、濃度提高而增加,表示減少粒徑、增加飼水濃度會加快薄膜阻塞趨勢,而過濾後期也有較低通量。另外,初始通量衰減速率也隨操作壓力提高而增加,而在本研究之掃流速度範圍內,則對初始通量衰減速率沒有顯著影響趨勢。此外,提高操作壓力與掃流速度可在過濾後期得到更高之過濾通量。藉由SEM觀察膜面結果顯示,提高掃流速度可減少薄膜表面生成之濾餅厚度。
根據實驗結果之通量數據以Hermia修正模式模擬,發現以中等阻塞模式模擬初始通量快速衰減階段,而濾餅過濾模式模擬緩慢變化之穩定階段,可得到非常良好之模擬結果。因此,藉由中等阻塞模式和濾餅過濾模式以兩階段模擬整體通量變化,更適合解釋超過濾之積垢機制(R-square可達0.99)。
實驗模擬與理論分析結果顯示,因本研究所使用之微粒粒徑皆大於膜孔,因此標準阻塞機制不會發生。此外,中等阻塞模擬常數(Ki)與初始通量衰減速率(-dJ/dt)的變化趨勢一致,故推測中等阻塞機制適合用於解釋過濾初期之積垢現象。而濾餅過濾常數(Kca)則與初始通量變化(-dJ/dt)沒有顯著的關係,所以濾餅過濾機制不足以解釋UF薄膜過濾初期之積垢機制。
摘要(英) The objectives of this study included: (1) Through the theoretical analysis of Hermia modified model to understand the parameters that affect the trend of flux curve for ultrafiltration (UF) membrane process; (2) Carried on the experiments to understand the effects of various particle sizes (62, 99, 130 and 280nm) and concentrations (50, 100 and 200mg/L) in water as well as different operating pressure (2, 3 and 4kg/cm2) and cross-flow velocity (0.01, 0.03 and 0.05m/s) on the performance of UF process; and (3) By means of simulation and verification of Hermia modified model to understand the fouling mechanisms on UF process.
The results of theoretical analysis show that the initial decline velocity of flux in per unit time (-dJ/dt) was affected significantly by the constants of the fouling modes. In general, -dJ/dt is increased linearly with the increase of the model constant that could be the indicator of the extent of fouling.
The experimental results indicated that -dJ/dt was increased with the decrease of particle size and the increase of particle concentration in water. This means reducing the particles size and increasing the particle concentration of feed water would accelerate the trend of membrane blocking, which resulted in lower flux at the later period of filtration. In addition, the increase of operating pressure also increase -dJ/dt, but the variation of cross-flow velocity in the range of this study had no significant effect on -dJ/dt. However, higher flux was obtained with the increase of operating pressure and cross-flow velocity at the later period of filtration. The SEM observation of membrane surface at the end of filtration revealed that increasing cross-flow velocity could reduce the cake thickness formed on the membrane surface.
Simulation of Hermia modified model based on the flux data of experimental results, it found that the flux curve could be fitted very well by intermediate blocking model for the initial fast flux decline stage and by cake filtration model for the slow change of flux at the steady stage of filtration. Consequently, using intermediate blocking model and cake filtration model to simulate the overall variation of flux by two-stage is more suitable (R-square is greater than 0.99) to explain the fouling mechanism of UF membrane filtration.
The results of experimental simulation and theoretical analysis revealed that there was no standard blocking mechanism occurred in this study because the particle size used in this experiment were all larger than the membrane pore size. In addition, the change tendency of simulated constants of intermediate blocking model (Ki) was consistent with the variation of the initial flux decline velocities (-dJ/dt). Therefore, it could be predicted that the intermediate blocking mechanism is suitable to explain the fouling phenomenon in the preceding period of filtration. On the other hand, the constants of cake filtration model (Kca) had insignificant relationship with the variation of flux in the preceding period of filtration, thus the cake filtration mechanism is inadequate to explain the fouling mechanism for the beginning of UF filtration.
關鍵字(中) ★ 積垢機制
★ 薄膜積垢
★ Hermia修正模式
★ 理論分析
★ 超過濾
關鍵字(英) ★ fouling mechanism
★ Hermia modified model
★ membrane fouling
★ ultrafiltration
★ theoretical analysis
論文目次 摘要 I
Abstract II
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XI
符號說明 XIII
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 薄膜程序 3
2.1.1 薄膜種類與形式 3
2.1.2 UF之應用 7
2.2 薄膜積垢 7
2.2.1 積垢原理與機制 8
2.2.2 影響薄膜積垢之因子 9
2.2.3 薄膜去垢方法 11
2.3 積垢之數學模式 12
2.3.1 常見應用於UF之積垢模式 12
2.3.2 Hermia模式與其修正式之應用 19
第三章 實驗材料、設備及研究方法 25
3.1 研究架構 25
3.2 實驗材料 25
3.3 實驗儀器、設備及藥品 27
3.4 實驗項目與步驟 31
3.5 分析項目、方法 35
第四章 結果與討論 37
4.1 Hermia修正模式理論分析探討 37
4.1.1 標準阻塞模式 37
4.1.2 中等阻塞模式 41
4.1.3 濾餅過濾模式 47
4.1.4 理論分析結果綜合討論 54
4.2 UF薄膜程序於不同飼水水質與操作條件之探討 56
4.2.1 微粒粒徑對UF薄膜滲透液通量與積垢之影響 56
4.2.2 飼水濃度對UF薄膜滲透液通量與積垢之影響 63
4.2.3 操作壓力對UF薄膜滲透液通量與積垢之影響 68
4.2.4 掃流速度對UF薄膜滲透液通量與積垢之影響 74
4.3 Hermia修正模式模擬 79
4.3.1 Hermia修正式單一模式模擬 79
4.3.2 Hermia修正式兩段模式模擬 81
4.3.3 Hermia修正模式模擬結果綜合比較 82
4.4 探討實驗結果與理論分析之差異 84
4.4.1 標準阻塞模式與實驗結果差異探討 84
4.4.2 中等準阻塞模式與實驗結果差異探討 86
4.4.3 濾餅過濾模式與實驗結果差異探討 90
4.4.4 模式模擬與實驗結果差異探討綜合討論 93
第五章 結論與建議 95
5.1 結論 95
5.2 建議 98
參考文獻 99
附錄一 不同飼水條件通量隨時間變化結果 105
附錄二 不同飼水條件模式模擬結果 109
附錄三 Hermia模式與修正式數學推導 119
參考文獻 1.Ahmad, A. L., M. F. Chong, S. Bhatia, “Ultrafiltation modeling of multiple solutes system for continuous cross-flow process,” Chemical Engineering Science, Vol.61, pp.5057-5069(2006).
2.Bai, R., H. F. Leow, “Microfiltration of activated sludge wastewater- the effect of system operation parameters,” Separation Purification Technology, Vol.29, pp.189-198(2002).
3.Bhattacharjee, C. and S. Datta, “Analysis of polarized layer resistance during ultrafiltration of PEG-6000: an approach based on filtration theory,” Separation Purification Technology, Vol.33, pp.115-126(2003).
4.Bowen, W. R., J. I. Calvo, A. Hernández, “Steps of membrane blocking in flux decline during protein microfiltration,” Journal of Membrane Science, Vol.101, pp.153-165(1995).
5.Bruggen, B. V., J. H. Kim, F. A. DiGiano, J. Geens, C. Vandecasteele, “Influence of MF pretreatment on NF performance for aqueous solutions containing particles and an organic foulant,” Separation and Purification Technology, Vol.36, pp.203-213(2004).
6.Cassano, A., M. Marchio, E. Drioli, “Clarification of blood orange juice by ultrafiltration:analyses of operating parameters, membrane fouling and juice quality,” Desalination, Vol.212, pp.15-27(2007).
7.Cheryan, M., “Ultrafiltration and Microfiltration Handbook,” Technomic, Lancaster(1998).
8.De Barros, S.T.D., C.M.G. Andrade, E.S. Mendes, L. Peres, “Study of fouling mechanism in pineapple juice clarification by ultrafiltration,” Journal of Membrane Science, Vol.215, pp.213-224(2003).
9.De Bruijn, J., A. Venegas, R. Borquez, “Influence of crossflow ultrafiltration on membrane fouling and Apple juice quality,” Desalination, Vol.148, pp.131-136(2002).
10.De Bruijn, J. and R. Bórquez, “Analysis of the fouling mechanisms during cross-flow ultrafiltration of Apple juice,” LWT, Vol.39, pp.861-871(2006).
11.Evans, P. J., M. R. Bird, A. Pihlajamäki, M. Nyström, “The influence of hydrophobicity, roughness and charge upon ultrafiltration membranes for black tea liquor clarification,” Journal of Membrane Science, Vol.313, pp.250-262(2008).
12.Field, R. W., D. Wu, J. A. Howell, B. B. Gupta, “Critical flux concept for microfiltration fouling,” Journal of Membrane Science, Vol.100, pp.259-272(1995).
13.Hermia, J., “Constant pressure blocking filtration laws - application to power-law non-newtonian fluids,” Institution of Chemical Engineer, Vol.60, pp.183-187(1982).
14.Howe, K. J., M. M. Clark, “Fouling of Microfiltration and Ultrafiltration Membranes by Natural Waters,” Environmental Science & Technology, Vol.36, pp.3571-3576(2002).
15.Hwang, K. J., T. T. Lin, “Effect of morphology of polymeric membrane on the performance of cross-flow microfiltration,” Journal of Membrane Science, Vol.199, pp.41-52(2002).
16.Hwang, K. J. P. Y. Sz, “Filtration characteristics and membrane fouling in cross-flow microfiltration of BSA/dextran binary suspension,” Journal of Membrane Science, Vol.347, pp.75-82(2010).
17.Hwang, S. J, D. J. Chang, C.H Chen, “Steady state permeate flux for particle cross-flow filtration,” The Chemical Engineering Journal, Vol.61, pp.171-178(1996).
18.Juang, R. S., H. L. Chen, Y. S. Chen, “Resistance-in-series analysis in cross-flow ultrafiltration of fermentation broths of Bacillus subtilis culture,” Journal of Membrane Science, Vol.323, pp.193-200(2008).
19.Katsoufidou, K., S. G. Yiantsios, A. J. Karabelas, “An experimental study of UF membrane fouling by humic acid and sodium alginate solutions: the effect of backwashing on flux recovery,” Desalination, Vol.220, pp.214-227(2008).
20.Konieczny, K., “Modelling of membrane filtration of natural water for potable purposes,” Desalination, Vol.143, pp.123-139(2002).
21.Kweon, J. H., D. F. Lawler, “Evaluating Precipitative Softening as a Pretreatment for Ultrafiltration of a Natural Water,” Environmental Engineering Science, Vol.19, pp.531-544(2002).
22.Lee, Y. and M. M. Clark, “Modeling of flux decline during crossflow ultrafiltration of colloidal suspensions,” Journal of Membrane Science, Vol.149, pp.181-202(1998).
23.Madaeni S. S., “The Ultrafiltration of very Dilute Colloidal Gold Suspensions,” Journal of Porous Materials, Vol.4, pp.31-44(1997).
24.Mohammadi, T., M. Kazemimoghadam, M. Saadabadi, “Modeling of membrane fouling and flux decline in reverse osmosis during separation of oil in water emulsions,” Desalination, Vol.157, pp.369-375(2003).
25.Mondal, S., S. De, “Generalized criteria for identification of fouling mechanism under steady state membrane filtration,” Journal of Membrane Science, Vol.344, pp.6-13(2009).
26.Mondal, S., S. De, “A fouling model for steady state crossflow membrane filtration considering sequential intermédiate pore blocking and cake formation,” Separation and Purification Technology, Vol.75, pp.222-228(2010).
27.Mondor, M., B. Girard, C. Moresoli, “Modeling flux behavior for membrane filtration of apple juice,” Food Research International, Vol.33, pp.539-548(2000).
28.Mulder, M., “Basic Principles of Membrane Technology,” Kluwer Academic Publishers(1990).
29.Nguyen, T. A., S. Yoshikawa, K. Karasu, S. Ookawara, “A simple combination model for filtrate flux in cross-flow ultrafiltration of protein suspension,” Journal of Membrane Science, Vol.403-404, pp.84-93(2012).
30.Nicolaisen, B., “Developments in membrane technology for wáter treatment,” Desalination, Vol.153, pp. 355-360(2002).
31.Orecki, A., M. Tomaszewska, K. Karakulski, “Removal of oil from model oily wastewater using the UF/NF Hybrid process,” Polish Journal of Environmental Studies, Vol.15, pp.173-177(2006).
32.Persson, K. M., V. Gekas, G. Trägårdh, “Study of membrane compaction and its influence on ultrafiltration water permeability,” Journal of Membrane Science, Vol.100, pp.155-162(1995)
33.Rajca, M., M. Bozek, K. Konieczny, “Application of mathematical models to the calculation of ultrafiltration flux in water treatment,” Desalination, Vol.239, pp.100-110(2009).
34.Richard, W. B., “Membrane technology and application,” John Wiley & Sons, New York(2004).
35.Sablani, S. S., M. F. A. Goosen, R. Al-Belushi, M. Wilf, “Concentration polarization in ultrafiltration and reverse osmosis: a critical review,” Desalination, Vol.141, pp.269-289(2001).
36.Salahi, A., M. Abbasi, T. Mohammadi, “Permeate flux decline during UF of oily wastewater: Experiment and modeling,” Desalination, Vol.251, pp.153-160(2010).
37.Shirazi, S., C. J. Lin, D. Chen, “Inorganic fouling of pressure-driven membrane process-A critical review,” Desalination, Vol.250, pp. 236-248(2010).
38.Shon, H. K., S. Vigneswaran, H. H. Ngo, “Effect of Partial Flocculation and Adsorption as Pretreatment to Ultrafiltration,” American Institute of Chemical Engineers, Vol.52, pp.207-216(2006).
39.Sim, L. N., Y. Ye, V. Chen, A. G. Fane, “Crossflow sampler modified fouling Index ultrafiltration (CFS-MFIUF)-An alternative fouling index,” Journal of Membrane Science, Vol.360, pp.174-184(2010).
40.Song, L., “Flux decline in crossflow microfiltration and ultrafiltration: mechanism and modeling of membrane fouling,” Journal of Membrane Science, Vol.139, pp.183-200(1998).
41.Tansel, B., J. Sager, J. Garland, S. Xu, “Effect of transmembrane pressure on overall membrane resistance during cross-flow filtration of solutions with high-ionic content,” Journal of Membrane Science, Vol.328, pp.205-210(2009)
42.Vincent Vela, M.C., S. Á. Blanco, J. L. García, E. B. Rodríguez, “Analysis of membrane pore blocking models applied to the ultrafiltration of PEG,” Separation and Purification Technology, Vol.62, pp.489-498(2008).
43.Vincent Vela, M.C., S. Á. Blanco, J. L. García, E. B. Rodríguez, “Analysis of membrane pore blocking models adapted to crossflow ultrafiltration in the ultrafiltration of PEG,” Chemical Engineering Journal, Vol.149, pp.232-241(2009).
44.Vincent Vela, M.C., S. Á. Blanco, J. L. García, B. Cuartas-Uribe, “Analysis of fouling resistances under dynamic membrane filtration,” Chemical Engineering and Processing, Vol.50, pp.404-408(2011).
45.Weber, J. W. J. and E. J. LeBoeuf, “Processes for advanced treatment of water,” Water Science and Technology, Vol. 40, pp. 11-19(1999).
46.Yazdanshenas, M., S. A. R. Tabatabaee-Nezhad, M. Soltanieh, R. Roostaazad, A. B. Khoshfetrat, “Contribution of fouling and gel polarization during ultrafiltraion of raw apple juice at industrial scale,” Desalination, Vol.258, pp.194-200(2010).
47.Zhang M. and L. Song, “Mechanisms and Parameters Affecting Flux Decline in Cross-Flow Microfiltration Ultrafiltration of Colloids,” Environmental Science & Technology, Vol.34, pp.3767-3773(2000).
48.林何印,「超濾與逆滲透薄膜程序處理及回收工業廢水之研究」,國立中央大學環境工程研究所碩士論文(2005)。
49.林哲昌,「薄膜防垢除垢技術與應用性回顧」,中興工程,第九十一期,pp.33-42(2006)。
50.黃啟彰,「薄膜組合程序處理淨水場濾池反洗廢水之研究」,國立中央大學環境工程研究所碩士論文(2010)。
51.曾國祐,「以超過濾處理半導體廠研磨廢水之研究」,國立台灣科技大學化學工程研究所碩士論文(2002)。
52.經濟部工業局,「廢水薄膜處理技術應用與推廣手冊」,經濟部工業局(2000)。
指導教授 曾迪華(Dyi-Hwa Tseng) 審核日期 2012-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明