參考文獻 |
Acharya, P., Prabhu, S., Barkdoll, M., 1995. Estimation of metholodogy and validation of particulate entrainment in a pilot-scale rotary kiln-based hazardous waste incinerator. Environmental Progress 14, 44–50.
Addink R. and Olie K. 1995. Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environmental Science and Technologies 29, 1425-1434.
Addink, R., Bakker, W.C.M., Olie, K., 1992. Influence of H2O and HCl on the formation of polychlorinated dibenzo-p-dioxins/dibenzofurans in a carbon/fly ash mixture. Organohalogen Compound 8, 205-284.
Addink, R., Govers, H.A.J., Olie, K., 1995. Desorption behavior of polychlorinated dibenzo-p-dioxins/dibenzofurans on a packed fly ash bed. Chemosphere 31, 3945-3950.
Addink, R., Olie, K., 1993. The influence of the oxygen concentration on PCDD/PCDF formation during de novo synthesis on fly ash. Organohalogen Compound 11, 355-358.
Ahlborg, V.G., Becking, G.C., Birnbaum, L.S., 1994. Toxic equivalency factors for dioxin like PCBs. Chemosphere 28, 1049-1067.
Altarawneh, M., Dlugogorski, B. Z., Kennedy, E.M., Mackie, J.C., 2009. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Progress in Energy and Combustion Science 35, 245-274.
Aracil, R.F., Conesa, J.A., 2010. Chlorinated and Nonchlorinated Compounds from the Pyrolysis and Combustion of Polychloroprene. Environmental Science & Technology 44, 4169–4175.
Bandara, J., Mielczarski, J.A., Kiwi, J., 2001. Adsorption mechanism of chlorophenols on iron oxides, titanium oxides and aluminum oxide as detected by infrared spectroscopy. Applied Catalysis B: Environment 34, 307-320.
Bandara, J., Mielczarski, J.A., Lopez, A., Kiwi, J., 2001. Sensitized degradation of chlorophenols on iron oxides induced by visible light. Comparision with titanium oxide. Applied Catalysis B: Environmental 34, 321-333.
Berkel, V., Olie, O.M., Van de Berg, K.M., 1988. Thermal degradation of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans on fly ash from a municipal incinerator. International Journal of Environmental Analytical Chemistry 34, 51-67.
Berruti, S.F., Mehrotra, A.K., 2001. Thermal desorption treatment of contaminated soils in a novel batch thermal reactor, Industrial & Engineering Chemistry Research 40, 5421-5430.
Bouras, O., Bollinger, J.C., Baudu, M., 2010. Effect of humic acids on pentachlorophenol sorption to cetytrimethylammonium-modified, Fe- and Al-pillared montmorillonites. Applied Clay Science 50, 58-63.
Bouras, O., Houari, M., Khalaf, H., 1999. Adsorption of some phenolic derivatives by surfactant treated Al-pillared Algerian Bentonite. Toxicological & Environmental Chemistry 70, 221–227.
Bouras, O., Houari, M., Khalaf. H., 2001. Using of surfactant modified Fe-pillared bentonite for the removal of pentachlorophenol from aqueous stream. Environmental Technology 22, 69–74.
Boyd, S.A., Shaobai, S., Lee, J.F., Mortland, M.M., 1988. Pentachlorophenol sorption by organo-clays. Clays and Clay Minerals 36, 125–130.
Carrol, D., Sleep, B., Krol, M., Boparai, H., Kocur, C., 2012. Nanoscale zero metal valent iron and bimetallic particles for contaminated site remediation. Advances in Water Resources, In Press.
Chang M.C., Kang H.Y., 2009. Remediation of pyrene-contaminated soil by synthesized nanoscale zero valent iron particles. Journal of Environmental Science and Health Part A 44, 576-582.
Chang, M.C., Shu, H.Y., 2005. Using nanoscale zero valent iron for the remediation of polycyclic aromatic hydrocarbons contaminated soil. Journal of Air and Waste Management Association 55, 1200-1207.
Chen, J.L., Al-Abed, S.R., Ryan, J.A., Li, Z., 2001. Effect of pH on dechlorination of trichloroethylene by zero-valent iron. Journal of Hazardous Material B83, 243-254.
Chen, J.W., Xiu, Z.M., Lowry, G.V., Pedro, J.J.A., 2011. Effect of natural organic matter on toxicity and reactivity of nano-scale-zero valent iron. Water Research 45, 1995-2001.
Cheng, R., Wang, J., Zhang, W., 2008. Degradation of chlorinated phenols by nanoscale zero valent iron. Frontiers of Environmental Science & Engineering 2, 103-108.
Cheng, R., Zhou, W., Wang, J.L., Qi, D., Zhang, W. X., Qian, Y., 2010. Dechlorination of pentachlorophenol using nanoscale of Fe/Ni particles: Role of nano-Ni and its size effect. Journal of Hazardous Materials 180, 79-85.
Cheng, R., Zhou, W., Wang, J.L., Qi, D.D., Lin, G., Zhang, W.X., Qian, Y., 2010. Dechlorination of pentachlorophenol using nanoscale Fe/Ni particles: role of nano Ni and its size effect. Journal of Hazardous Materials 180, 79-85.
Cong, X., Xue, N., Wang, S., Li, K., Li, F., 2010. Reductive dechlorination of organochlorine pesticides in soils from an abandoned manufacturing facility by zero-valent iron. Science of the Total Environment 408, 3418-3423.
Corsby, D.G., Beynon, K I., Korte, F., Still, G.G., Vonk, J.W., Greve, P.A.. 1981. Environmental Chemistry of Pentachlorophenol. Pure and Applied Chemistry 53, 1051-1080.
Cunliffe, A.M., Williams, P,T., 2007. PCDD/PCDF isomer pattern in waste incinerator fly ash and desorbed into the gas phase in relation to temperature. Chemosphere 66, 1929-1938.
Cunliffe, A.M., Williams, P.T., 2007. Influence of temperature on PCDD/PCDF desorption from waste incineration fly ash under nitrogen. Chemosphere 66, 1146-1152.
Czaplicka, M., 2004. Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment 322, 21-39.
Dai, Y., Li, F., Ge, F., Zhu, F., Wu, L., Yang, X., 2006. Mechanism of the enhanced degradation of pentachlorophenol by ultrasound in the presence of elemental iron. Journal of Hazardous Materials B137, 1424–1429.
Dams, R.I., Patonb, G., Killham, K., 2007. Bioaugmentation of pentachlorophenol in soil and hydroponic systems. International Biodeterioration & Biodegradation 60, 171–177.
Dela Cruz, A.L.N., Gehling, W., Lomnicki, S., Cok R., Dellinger, B., 2011. Detection of environmentally persistent free radicals at a superfund wood treating site. Environmental Science & Technology 45, 6356-636.
Dickson, L.C., Karasek, F.W., 1987. Mechanism of formation of polychlorinated dibenzo-p-dioxins produced on municipal incinerator fly ash from reactions of chlorinated phenols. Journal of Chromatography 389, 127-137.
Dombek, T., Dolan, E., Schultz, J., Klarup, D., 2001. Rapid reductive dechlorination of atrazine by zero valent iron under acidic condition. Environmental Pollution 111, 21-27.
Egger, K.W., Cocks, A.T., 1977. Pyrolysis reactions involving carbon-halogen bonds, in: S. Patai (Eds.), The Chemistry of the Carbon-Halogen Bond, John Wiley Press, New York, 677-746.
Eicemann, G.A., Rghei, H.O., 1982. Products from laboratory chlorination of fly ash from municipal incinerator. Environmental Science & Technology 16, 53–56.
Environmental Protection Bureau of Tainan City, The pollution survey of two-ninth paths of Tainan city, Report Number 2004-09-25, 2004
Falciglia, P..P., Giustra, M.G., Vagliasindi, F.G.A., 2011. Low temperature thermal desorption of diesel polluted soil: Influence of temperature and soil texture on contaminant removal kinetics. Journal of Hazardous Materials 185, 392-400.
Feng, H.C., Peng, G.X., Mei, Z. Y., Yi, L., Sheng, W.D., Xiao, T. H., 2010. Characterization of nanoscale iron and its degradation of 2,4-dichlorophenol. Chinese Science Bulletin 55, 350-357.
Fisher, B., 1991. Pentachlorophenol: toxicology and environmental fate. Journal of Pesticide Reform 11, 1-5
Gan, S., E.V. Lau, H.K. Ng, Remediation of soils contaminated with polycylic aromatic hydrocarbon (PAHs). Journal of Hazardous Materials 172 (2009) 532-549.
Gao, X., Wang, W., Liu, X., 2007. Low-temperature dechlorination of hexachlorobenzene on solid supports and pathway hypothesis. Chemosphere 71, 1093-1099.
Ghaffar, A., Tabata, M., 2009. Dechlorination/detoxification of aromatic chlorides using fly ash under mild conditions. Waste Management 29, 3004-3008.
Gillham, R.W, O’Hannesin, S.F., 1994. Enhanced degradation of halogenated aliphatics by zero-valent iron. Ground Water 32, 958-967.
Gullon, I.M., Esperanza, M., Font., 2001. Kinetic model for the pyrolysis and combustion of poly-(ethylene terephthalate) (PET). Journal of Analytical and Applied Pyrolysis 1, 635-650.
Gunawardana, B., Singhal, N., Swedlund, P., 2011. Degradation of chlorinated phenols by zero valent iron and bimetals of iron- A review. Environmental Engineering Research 16, 187-203.
Hagenmaier, H., Brunner, H., Haag, R., Kraft, M., 1987. Copper-catalyzed dechlorination/hydrogenation of polychlorinated dibenzo-p-dioxins, polychlorinated dibenzofurans and other chlorinated aromatic compounds. Environmental Science & Technology 21 (11) 1085-1088.
Harjanto, S., Kasai, E., Terui, T., Nakamura, T., 2002. Behavior of dioxin during thermal remediation in the zone combustion process. Chemosphere 47, 687-693.
He, Y., Xu, J., Wang, H., Ma, Z., Chen, J., 2006. Detailed sorption isotherms of pentachlorophenol on soils and its correlation with soil properties. Environmental Research 101, 362-372.
He, Y., Xu, J., Wang, H., Zhang, Q., Muhammad, A., 2006. Potential contributions of clay minerals and organic matter to pentachlorophenol retention in soil. Chemosphere 65, 497-505.
Hinton, W.S., Lane, A.M., 1991. Synthesis of polychlorinated dioxins over MSW incinerator fly ash to identify catalytic species. Chemosphere 23, 831-840.
Hinton, W.S., Lane, A.M., 1992. Effect of zinc, copper and sodium on formation of polychlorinated dioxins on MSW incinerator fly ash. Chemosphere 25, 811-819.
Hou, C. F., Ge, X. P., Zhou, Y. M., Li, Y., Wang, D.S., 2010. Characterization of nano scale iron and its degradation of 2,4-dichlorophenol. Chinese Science Bulletin 55, 350-357.
Huang, H., Buekens, A., 2000. Chemical kinetic modeling of PCDD formation from chlorophenol catalyzed by incinerator fly ash. Chemosphere 41, 943-951.
Hwang, Y. H., Kim, D. G., Shin, H. S., 2011. Effects of synthesis conditions on the characteristics and reactivity of nanoscale zerovalent iron. Applied catalysis B: Environmental 105, 144-150.
Ishida, M., Shijo, R., Nie, P., Nakanura, N., Sakai, S., 1998. Full-scale plant study on low temperature thermal dechlorination of PCDDs/ PCDFs in fly ash. Chemosphere 37, 2299–2308.
Jauhiainen, J., Conesa, J.A., Font, R., Gullon, I.M., 2004. Kinetics of the pyrolysis and combustion of olive oil solid waste. Journal of Analytical and Applied Pyrolysis 72, 9–15.
Jiamjitrpanich, W., Polprasert, C., Parkpian, P., Delaune, R.D., Jugsujinda, A., 2010. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles. Journal of Environmental Science and Health Part A 45, 263-274.
Jou C. J., 2008. Degradation of pentachlorophenol with zero-valence iron coupled with microwave energy. Journal of Hazardous Materials 152, 699-702.
Jou, C.J. G., Hsieh, S. C., Lee, C.L., Lin, C., Huang, H.W., 2010. Combining zero valent iron nanoparticles with microwave energy to treat chlorobenzene. Journal of Taiwan Institute of Chemical Engineers 41, 216-220.
Kasai, E., Harjanto, S., Terui, T., Nakamura, T., Waseda, Y.,
2000. Thermal remediation of PCDD/Fs contaminated soil by zone combustion process. Chemosphere 41, 857-864.
Katsenovich, Y. P., Wilhelm, F.R.M., 2009. Evaluation of nanoscale zerovalent iron particles for trichloroethene degradation in clayey soil. Science of the Total Environment 407, 4986-4993.
Kim Y.H., Carraway E.R., 2000. Dechlorination of Pentachlorophenol by Zero valent iron and Modified zero valent iron. Environmental Science & Technology 34, 2014-2017.
Kim, G., Jeong, W., Choe, S., 2007. Impact of pH buffer capacity of sediment on dechlorination of atrazine using zero valent iron. Journal of Environmental Science and Health Part B 42, 287-295.
Kung, K.H.S., McBride, M. B., 1991. Bonding of chlorophenols on iron and aluminum oxides. Environmental Science & Technology 25, 702-709.
Lee, C.L., Lee, H.Y., Tseng, K.H., Hong, P.K.A., Jou, C.J.G., 2011. Enhanced dechlorination of chlorobenzene by microwave-induced zero-valent iron: particle effects and activation energy. Environmental Chemistry Letters 9, 355-359.
Lee, J.K., Parka, D., Kimb, B., Dongb, J., Lee, S., 1998. Remediation of petroleum-contaminated soil by fluidized thermal. Waste Management 18, 503-507.
Lee, J.M., Kim, J.H., Lee, J.W., Kim, J.H., Lee, H.S., Chang, Y.S., 2008. Synthesis of Fe nano particles obtained by borohydride reduction with solvent. Remediation of chlorinated and recalcitrant compounds: Proceedings of the sixth international conference on remediation of chlorinated and recalcitrant compounds, paper A-067.
Lee, W.J., Shih, S.I., Chang, C.Y., Lai, Y.C., Wang, L.C., Chang, C.G.P., 2008. Thermal treatment of polychlorinated dibenzo-p-dioxins and dibenzo furans from contaminated soil. Journal of Hazardous Materials 160, 220-227.
Li, L., Fan, M., Brown, R.C., Leeuwen, J.V., Wang, J., Wang, W., Song, Y., Zhang, P., 2006. Synthesis, Properties and Environmental Applications of nanoscale iron based materials: A review. Critical reviews in environmental science and technology 36, 405-431.
Li, X.Q., Elliott, D.W., Zhang, W.X., 2006. Zero-valent iron nanoparticles for abatement of environmental pollutants: Materials and Engineering Aspects. Critical Reviews on solid state and materials Sciences 31, 111-122.
Li, Y., Zhang, Y., Li, J., Zheng, X.M., 2011. Enhanced removal of pentachlorophenol by a novel composite: Nanoscale zero valent immobilized on organobentonite. Environmental Pollution 159, 3744-3749.
Li, Z., Yuan, S., Wan, J., Long, H., Tong, M., 2011. A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil. Journal of Contaminant Hydrology 124, 99-107.
Liao, C.J., Chung, T.L., Chen, W.L., Kuo, S.L., 2007. Treatment of pentachlorophenol-contaminated soil using nano-scale zero valent iron with hydrogen peroxide. Journal of Molecular Catalysis A: Chemical 265, 189-194.
Lien, H.L, Zhang, W.X., 2001. Nanoscale iron particle for complete reduction of chlorinated ethenes. Colloid and Surfaces A 191, 97-105.
Lien, H.L., Zhang, W. X., 2007. Nanoscale Pd/Fe bimetallic particles: catalytic effects of palladium on hydrodechlorination. Applied Catalysis B: Environmental 77, 110.
Lighty, J.S., Silcox, G.D., Pershing, D.W., 1990. Fundamentals for the thermal remediation of contaminated soils: Particle and bed desorption models. Environmental Science & Technology 24, 750-757.
Lindahl, R., Rappe, C., Buser, H.R., 1980. Formation of polychlorinated dibenzofurans (PCDFs) and polychlorinated dibenzo-p-dioxins (PCDDs) from the pyrolysis of polychlorinated diphenyl ethers. Chemosphere 9, 351-361.
Liou R.M., Chen S.H., Hung M.Y., Hsu C.S., 2004. Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe3+-resin/H2O2. Chemosphere 55, 1271–1280.
Liu, Y., Choi, Dionysou, D., Lowry, G.V., 2005a. Trichloroethene hydrodechlorination in water by highly disordered monometallic nanoiron. Chemistry of Materials 17, 5315-5322.
Liu, Y., Majetich, S.A., Tilton, R.D., Sholl, D.S., Lowry, G.V., 2005b. TCE dechlorination rates, pathways and efficiency of nanoscale iron particles with different properties. Environmental Science & Technology 39, 1338-1345.
Lomnickia, S., Dellinger, B., 2003. A detailed mechanism of the surface-mediated formation of PCDD/F from the oxidation of 2-chlorophenol on a CuO/Silica surface. The Journal of Physical Chemistry A 107, 4387-4395.
Lundin, L., Aurell, J., Marklund, S., 2011. The behavior of PCDD and PCDF during thermal treatment of waste incineration ash. Chemosphere 84, 305-310.
Lundin, L., Marklund, S., 2007. Thermal degradation of PCDD/F, PCB and HCB in municipal solid waste ash. Chemosphere 67, 474-481.
Ma, X., Zheng, M., Liu, W., Qian, Y., Zhao, X., Zhang, B., 2005. Synergic effect of calcium oxide and iron (III) oxide on the dechlorination of hexachlorobenzene. Chemosphere 60, 796-801.
McGraw-Hill, 1982. Encyclopedia of Science and Technology, 5th Edition, Mcgraw-Hill Book Co., Newyork.
Merino, J., Bucala, V., 2007. Effect of temperature on the release of hexadecane from soil by thermal treatment. Journal of Hazardous Materials 143, 455-461.
Mitoma, Y., Egashira, N., Simion, C., 2009. Highly effective degradation of polychlorinated biphenyls in soil mediated by a Ca/Rh bicatalytic system. Chemosphere 74, 968-973.
Mitoma, Y., Makitakase, N., Hidekitashiro, T., Egashira, N., 2006. Calcium-promoted Catalytic Degradation of PCDDs, PCDFs and Coplanar PCBs under a Mild Wet Process. Environmental Science & Technology 40, 1849-1854.
Mitoma, Y., Uda, T., Egashira, N., 2004. Approach to Highly Efficient dechlorination of PCDDs, PCDFs and Coplanar PCBs Using Metallic Calcium in Ethanol under Atmospheric Pressure at Room Temperature. Environmental Science & Technology 38, 1216-1220.
Morales, J., Hutcheson, R., Cheng, I. F., 2002. Dechlorination of chlorinated phenols by catalyzed and uncatalyzed Fe(0) and Mg(0) particles. Journal of Hazardous Materials B90, 97-108
Mulholland, J.A., Akki, U., Yang, Y., Ryu, J.Y., 2001. Temperature dependence of PCDD/F isomer distributions from chlorophenol precursors. Chemosphere 42, 719-727.
Nordstrom, D.K., Munoz, J.L., 1985. Geochemical thermodynamics: The Benjamin/Cummings Publishing Co., Inc.
Noubactep C., 2008. A critical review on the process of contaminant removal in Fe(0)-H2O systems. Environmental Technology 29, 909-920.
Noubactep, C., 2009. The suitability of metallic iron for environmental remediation. Environmental Progress and Sustainable Energy 29, 286-291.
Nurmi, J.T., Tratnyek, P. G., Sarathy, V., Baer, D. R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J. C., Matson, D. W., Penn, R.L., Driessen, M. D., 2005. Characterization and Properties of metallic iron particles: Spectroscopy, Electrochemistry and Kinetics. Environmental Science & Technology 39, 1221-1230.
Nusier, O.K., Abu-Hamdeh, N.H., 2003. Laboratory techniques to evaluate thermal conductivity for some soil. Heat & Mass Transfer 39, 119-123
Pekfirek, V., Karban, J., Fiserova, E., Bures, M., Pacakova, V., Vecernikova, E., 2003. Dehalogenation Potential of Municipal Waste Incineration Fly Ash. Environmental Science & Pollution Research 10, 39-43.
Qian, Y., Zheng, M., Liu, W., Ma, X., Zhang, B., 2005. Influence of metal oxides on PCDD/Fs formation from pentachlorophenol. Chemosphere 60, 951-958.
Reddy, K.R., Karri, M.R., 2008. Removal and degradation of pentachlorophenol in clayed soil using nanoscale iron particle. GeoCongress: Geotechnics of Waste Management and Remediation. Proceedings of sessions of GeoCongress, 463-470.
Ross, B.J., Naikwadi K.P., Karasek, F.W., 1989. Effect of temperature, carrier gas and precursor structure on PCDD and PCDF formed from precursors by catalytic activity of MSW incinerator fly ash. Chemosphere 19, 291-198.
Ryu, J.Y., 2008. Formation of chlorinated phenols, dibenzo-p-dioxins, dibenzofurans, benzenes, benzoquinnones and perchloroethylenes from phenols in oxidative and copper (II) chloride-catalyzed thermal process. Chemosphere 71, 1100-1109.
Satapanajaru, T., Anurakpongsatorn, P., Pengthamkeerati, P., Boparai, H., 2008. Remediation of Atrazine contaminated soil and water by nano zero valent iron. Water Air & Soil Pollution 192, 349-359.
Satapanajaru, T., Onanong, S., Confort, S.D., Snow, D.D., Cassada, D.A., Harris, C., 2009. Remediating dinoseb contaminated soil with zerovalent iron. Journal of Hazardous Materials 168, 930-937.
Schwarzer, H.C., Peukert, W., 2002. Experimental investigation into the influence of mixing on nanoparticle precipitation. Chemical Engineering & Technology 25, 657–661.
Sedlak, D.L., Dean, K.E., Armstrong, D.E., Andren, A.W., 1991. Interaction of Quicklime with Polychlorobiphenyl-Contaminated Soil. Environmental Science & Technology 25, 1936-1940.
Shea, P.J., Machacek, T.A., Comfort, S.D., 2004. Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution 132, 183-188.
Shih, Y.H., Hsu, C.Y., Su, Y.F., 2011. Reduction of hexachlorobenzene by nanoscale zero valent iron: Kinetics, pH effect, and degradation mechanism. Separation and Purification Technology 76, 268-274.
Sidhu, S., Dellinger, B., 1997. The effect of hydrocarbons on PCDD/F formation in the Gas-Phase oxidation of 2,4,6-trichlorophenol. Organohalogen Compounds 31, 469-474.
Sidhu, S.S., Maqsud, L., Dellinger, B., 1995. The Homogeneous, Gas-Phase Formation of Chlorinated and Brominated Dibenzo-p-Dioxins from 2,4,6-Trichloro- and 2,4,6-Tribromophenols. Combustion and Flame 100, 11-20.
Singh, J., Comfort, S.D., Shea, P.J., 1999. Iron-mediated remediation of RDX-contaminated water and soil under controlled Eh/pH. Environmental Science & Technology 33, 1488-1494.
Singh, R., Misra, V., Singh, R.P., 2011. Remediation of ?-hexachlorocychlohexane contaminated soil using nanoscale zero valent iron. Journal of Bionanoscience 5, 82-87.
Singhal, R.K., Gangadhar, B., Basu, H., Manisha, V., Naidu, G.R.K., Reddy, A.V.R., 2012. Remediation of Malathion contaminated soil using zero valent iron nano particles. American Journal of Analytical Chemistry 3, 76-82.
Song, G.J., Kim, S.H., Seo, Y.C., Kim, S.C., 2008. Dechlorination and destruction of PCDDs/PCDFs in fly ashes from municipal solid waste incinerators by low temperature thermal treatment. Chemosphere 71, 248-257.
Su, C and Puls, A. W., 1999. Kinetics of trichloroethene reduction by zero valent iron and Tin: pretreatment effect, apparent activation energy and intermediate products. Environmental Science & Technology 33, 163.
Sun, Y.P., Li, X.Q., Cao, J.C., Zhang, W. X., Wang, H.P., 2006. Characterization of zero-valent iron particles. Advances in Colloid and Interface Science 120, 47-56.
Taniguchi, S., Miyamura, A., Ebihara, A., Hosomi, M., Murakami, A., 1998. Treatment of pcb-contaminated soil in a pilot- scale continuous decomposition system. Chemosphere 37, 2315-2326.
Taniguchi, S., Murakami, A., Hosomi, M., Miyamura, A., Uchida, R., 1997. Chemical Decontamination of PCB- Contaminated Soil. Chemosphere 34, 1631-1637.
Thompson, J.M., Chisholm B.J., Bezbaruah, A. N., 2010. Reductive dechlorination of chloroacetanilide herbicide (Alachlor) using zero valent iron particles. Environmental Engineering Science 27(3), 227-232.
Tingyu, Z., Shouyu, Z., Jiejie, H., Yang, W., 2000. Effect of Calcium oxide on pyrolysis of coal in a fluidized bed. Fuel Processing Technology 63, 271-284.
Tratnyek, P.G., Johnson, R.L. 2006. Nanotechnologies for environmental cleanup. Nanotoday, 1, 44-48.
Tse, K.K.C., Lo, S.L., 2002. Desorption kinetics of PCP-contaminated soil: effect of temperature. Water Resources 36, 284-290.
USEPA, 1989. Interim procedures for estimating risks associated with exposures to mixtures of chlorinated dibenzo-p-dioxins and dibenzofurans (CDDs and CDFs) and 1989 Update. Washington, DC: Risk assessment forum. EPA/625/3-89.016.
Uzgiris, E.E., Edelstein, W.A., Philipp, H.R., Iben, I.E.T., 1994. Complex thermal desorption of PCBs from soil. Chemosphere 30, 377-387.
Van den Berg, M., Birnbaum, L., Bosveld, A.T.C., 1998. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives 106, 775-792.
Vlkova L., Pekarek V., Pacakova V., Karban J., Bures M., Stulik K., 2004. Dechlorination ability of municipal waste incineration fly ash for polychlorinated phenols. Chemosphere 56, 935-942.
Voncina, E., Solmajer, T., 1998. Thermolysis on aluminum oxides chemisorbed 3-chlorophenol as example for the fly ash mediated surface catalysis reaction. Chemophere 37, 2335 - 2350.
Wang, C., Zhang, W., 1997. Nanoscale metal particles for dechlorination of PCE and PCBs. Environmental Science & Technology 31, 2154–2156.
Wang, W., Gao, X., Zheng, L., Lan, Y., 2006. Reductive dechlorination of polychlorinated dibenzo-p-dioxins and dibenzofurans in MSWI fly ash by sodium hypophosphite. Separation and Purification Technology 52, 186–190.
Wang, W., Jin, Z., Li, T., Zhang, H., Gao, S., 2006a. Preparation of spherical iron nanoclusters in ethanol-water solution for nitrate removal. Chemosphere 65, 1396-1404.
Wang, Yu., Zhou, D., Wang, Y., Wang, L., 2012. Automatic pH control system enhances the dechlorination of 2,4,4’-trichlorobiphenyl and extracted PCBs from contaminated soil by nanoscale Feo and Pd/Feo. Environmental Science and Pollution Research 19, 448-457.
Weber, R., Hagenmaier, H., 1998. Mechanism of the Formation of Dibenzo-p-dioxins and Furans from Chlorophenols in Gas Phase Reactions. Chemosphere 38, 529-549.
Weber, R., Nagai, K., Nishino, J., Shiraishi, H., Ishida, M., Takasuga, T., Konndo, K., Hiraoka, M., 2002. Effects of selected metal oxides on the dechlorination and destruction of PCDD and PCDF. Chemosphere 46, 1247-1253.
Yang, Z.., Xia, C.., Zhang, Q., Chen, J., Liang, X., 2007. Catalytic detoxification of polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans in fly ash. Waste Management 27, 588-592.
You, C.N., Liu, J.C., 1996. Desorptive behavior of chlorophenols in contaminated soil. Water Science and Technology 33, 263-270.
Zhang, F., Chen, J., Zhang, H., Ni, Y., Liang, X., 2007. The study on the dechlorination of OCDD with Pd/C catalyst in ethanol-water solution under mild condition. Chemosphere 68, 1716-1722.
Zhou, T., Li, Y., Lim, T.T., 2010. Catalytic hydrodechlorination of chlorophenols by Pd/Fe nanoparticles: Comparisons with other bimetallic systems, kinetics and mechanism. Separation and Purification Technology 76, 206-214.
Zhu, B.Z., Shan, G.Q., 2009. Potential mechanism for pentachlorophenol-induced carcinogenicity: A novel mechanism for metal-independent production of hydroxyl radicals. Chemical Research and Toxicology 22, 969-977.
|