博碩士論文 993206023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.144.97.97
姓名 林建平(Jian-Ping Lin)  查詢紙本館藏   畢業系所 環境工程研究所
論文名稱 改質SCR觸媒以應用於同時去除戴奧辛與NOx之研究
(Modification of SCR catalyst for simultaneous removal of dioxin and NOx from gas streams)
相關論文
★ 國內汽車業表面塗裝製程VOCs減量技術探討★ 光電廠溫室效應氣體排放量推估-以龍潭廠區為例
★ 受苯、甲苯與1,2-二氯乙烷污染場址之案例研究★ TFT-LCD產業揮發性有機物(VOCs)空氣污染之減量與防制之研究
★ 膠帶製造業VOCs排放與防制效率之探討★ 校園環境噪音對國三學生煩擾度及學習成就的影響-以桃園縣某國中為例
★ 醫療業從業人員職業災害分析探討-以某區域醫院為例★ 面板製程之有害物暴露評估-以A廠為例
★ 更換低噪音工具以改善廠房噪音之研究-以汽車製造A廠為例★ 以高溫熔融還原法回收不銹鋼集塵灰中鉻與鎳之效益探討
★ 以介電質放電技術轉化四氟甲烷及六氟乙烷之初步探討★ 垃圾焚化爐空氣污染控制設備影響戴奧辛排放特性之初步探討
★ 以活性碳吸附煙道排氣中戴奧辛之初步研究★ 以低溫電漿去除揮發性有機物之研究
★ 北台灣大氣環境中戴奧辛濃度之分布特性研究★ 介電質放電技術控制小型重油鍋爐氮氧化物排放之可行性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 選擇性觸媒還原程序應用於排氣中NOx之控制已行之有年,其催化反應活性主要由釩氧化物提供,操作於300到400oC方能達到高去除效率,相關研究也證實SCR觸媒對於戴奧辛有很好的去除效果。本研究探討應用自製SCR觸媒同時去除戴奧辛與NOx之效率,並進一步添加貴重金屬進行觸媒改質,藉由貴重金屬的高催化活性以提升對污染物之催化特性。另一方面同時尋找具備多重污染物去除潛力之貴重金屬進行改質,以落實多重污染物排放控制策略 (multipollutant emission control)。文獻證實Ru具高轉化活性,且成本相較於其他Pt、Pd貴重金屬低。故本研究以V2O5/TiO2觸媒為基礎,添加Ru金屬進行改質,並製備多種不同成分配比之觸媒,以獲取較佳之觸媒成分。研究結果指出戴奧辛類污染去除方面,V2O5/TiO2觸媒反應溫度由150oC提升至300oC對於戴奧辛去除效率有正面之影響。5wt%V2O5/ TiO2在反應溫度為150oC時,對PCB之去除部分仰賴觸媒吸附效果而未實際與觸媒進行反應,破壞效率為68.9%;當溫度提升至200oC時,效率始有顯著提升,其去除機制方達到以觸媒破壞為主要動力,破壞效率達94.6%。改質後Ru/5wt%V2O5/TiO2觸媒在溫度150oC時顯著提升PCB破壞效率。在NOx去除方面,NO轉換效率受NH3添加劑量之影響較為顯著,在NH3:NO為1.2時,5wt%V2O5/TiO2對NO之轉換效率隨操作溫度上升而有顯著提升,並在300oC達99%;在NH3:NO為1時,溫度操作在250oC達最高效率為73%,副產物量測方面,操作溫度由300oC上升至400oC開始有明顯N2O之生成,並進一步發現N2O生成可能由NH3氧化生成,而觸媒之釩氧化物成分越高也會提升N2O生成之趨勢。經改質後3wt%Ru/ 5wt%V2O5/TiO2在300oC和350oC發現有更高NO轉換效率分別為79.8%、88.5%,並且對於N2O之生成有抑制作用。
摘要(英) Selective catalytic reduction (SCR) is a well-established and widely used process for the abatement of NOx present in waste gases from stationary sources. The catalytic activity is mainly provided by vanadium oxide and it has to be operated at a temperature range of 300oC-400oC to achieve high NOx removal efficiency. Previous study indicates that the SCR catalyst can also be applied for PCDD/Fs removal. This study investigated the self-made traditional SCR catalyst for simultaneous removal of dioxin and NOx from gas streams, and modified the catalyst for higher activity and multiple pollutant removal. Literature confirmed that Ru is of high activity and the cost is lower than other noble metals, such as Pt and Pd. In this study, V2O5/TiO2 is modified by adding Ru, with different percentages. Experimental results indicate that Ru/5wt%V2O5/TiO2 catalyst significantly improves dioxin destruction efficiency at 150oC. For the removal of NOx, the modified 3wt%Ru/5wt%V2O5/TiO2 achieved higher NO conversion efficiencies of 79.8%, and 88.5%, respectively, at 300oC and 350oC, and also reduced N2O formation.
關鍵字(中) ★ 多重污染物控制
★ 戴奧辛
★ NOx
★ SCR
關鍵字(英) ★ NOx
★ dioxin
★ SCR
★ multi-pollutant control
論文目次 第一章 前言 1
1.1 研究緣起 1
1.2 研究目的與範疇 2
第二章 文獻回顧 3
2.1 戴奧辛介紹 3
2.1.1 戴奧辛基本特性 3
2.1.2 戴奧辛類化合物之毒性當量 7
2.1.3 戴奧辛生成機制 9
2.2 戴奧辛現行控制技術 12
2.3 NOX介紹 16
2.3.1 NOx基本特性 16
2.3.2 NO生成機制 17
2.4 NOX現行控制技術 18
2.5 觸媒催化特性 22
2.5.1 觸媒催化之原理與反應機制 22
2.5.2 觸媒種類與特性的比較 24
2.6 觸媒去除污染物之應用 26
2.6.1 De-Dioxins觸媒 26
2.6.2 De-NOx觸媒 31
第三章 研究方法與步驟 35
3.1 研究設計流程 35
3.2實驗設備及試藥 38
3.2.1 實驗藥品 38
3.2.2 實驗溶劑 39
3.2.3 實驗材料 39
3.2.4 實驗設備 40
3.3戴奧辛樣品分析 41
3.3.1 戴奧辛樣品前處理 41
3.3.2 GC/HR分析儀器條件設定 44
3.3.3 戴奧辛類多氯聯苯分析程序 50
3.4 NOX分析 61
3.4.1 FT-IR分析條件 61
3.5實驗設計 63
3.5.1 實驗模組建立 63
3.5.2 反應操作參數 65
3.5.3 V2O5/TiO2觸媒製備 66
3.6其他儀器原理 69
3.6.1 BET比表面積分析儀 (ASAP 2010) 69
3.6.2 X光繞射分析儀 (XRD) 69
3.6.3 掃描式電子顯微鏡分析(SEM) 70
3.6.4 能量分散光譜儀 (EDS) 71
第四章 結果與討論 72
4.1觸媒基本特性 72
4.1.1 BET 72
4.1.2 SEM 73
4.1.3 EDS 75
4.1.4 XRD 76
4.2戴奧辛去除探討 78
4.2.1 戴奧辛入口濃度測………..……………………………………..78
4.2.2 擔體測試 80
4.2.3 溫度對於戴奧辛去除、破壞之差異 82
4.2.4 觸媒配比對於PCB去除、破壞之差異 84
4.3 NOX去除探討 85
4.3.1 NH3劑量影響 86
4.3.2 觸媒配比對NOx去除影響 88
4.3.3 NH3 slip之探討 91
4.3.4 NOx去除效率 92
4.4 觸媒改質 93
4.4.1 改質後基本特性分析 96
4.4.2 改質後之deDioxin探討 100
4.4.3 改質後之deNOx探討 104
4.4.3.1 不同操作條件之探討 107
4.5. 最佳操作條件 112
第五章、結論與建議 114
5.1 結論 114
5.2 建議 115
參考文獻 ……………………………………………………………......…..116
參考文獻 Burnley, S. J., and Aplin, P., “Controlling Oxides of Nitrogen Emissions from a Municipal-Waste Incinerator by Flue-gas Recirculation”, Journal of the Institute of Energy,Vol. 72, pp. 165-169 (1999)
Boyano, A., Lombardo, N., Galvez, M. E., Lazaro, M. J., and Moliner, R., “Vanadium-loaded Carbon-based Monoliths for the on-board NO Reduction: Experiment Study of Operating Conditions”, Chemical Engineering Journal, Vol. 144, pp. 343-351 (2008)
Ballschmiter, K., W. Zoller, C. Scholtz and A. Nottrodt, “Destruction of PCDD and PCDF in Bleached Pulp by Chlorine Dioxide Treatment”, Chemosphere, Vol. 12, pp. 585-597 (1983)
Chi, K. H., Chang, S. H. and Chang, M. B., “Characteristics of PCDD/Fs Distributions in Vapor and Solid Phases and Emissions from the Waelz Process.”, Environmental Science & Technology, Vol. 40, pp. 1770–1775 (2006)
Chi, K. H., Chang, S. H. and Chang, M. B., “Reduction of Dioxin-like Compound Emissions from a Waelz Plant with Adsorbent Injection and a Dual Baghouse Filter System”, Environmental Science & Technology, Vol. 42, pp. 2111–2117 (2008)
Dickson, L. C., Lenoir, D. and Hutzinger, O., “Surface-Catalyzed Formation of Chlorinated Dibenzodioxins and Dibenzofurans during Incineration”, Chemosphere, Vol. 19, pp. 277-282 (1989).
Dong W. K., Moon H. K. and Sung W. H., “An On-line Infrared Spectroscopic System with a Modified Multipath White Cell for Direct Measurements of N2O from NH3-SCR Reaction” The Korean Journal of Chemical Engineering, Vol 27, pp.1730-1737 (2010)
Fenimore, C. P. and Moore, J. “Quenched Carbon Monoxide in Fuel-Lean Flame Gas” , Combustion and Flame, Vol. 22, pp. 343-351 (1974).
Frederick, N., Ravi K. Agrawal and Stephen C. Wood, “Induced Flue Gas Recirculation for NOx Control: Apply on Boilers and Process Heaters,”Entergy report.
Furrer, J., H. Deuber, H. Hunsinger, S. Kreisz, A. Linek, H. Seifert, J. Stöhr, R. Ishikawa and K. Watanabe, “Balance of NH3 and Behavior of Polychlorinated Dioxins and Furans in the Course of the Selective Non-catalytic Reduction of Nitric Oxide at the TAMARA Waste Incineration Plant”, Waste Management, Vol. 18, pp. 417-422 (1998).
Gullett, B. K., Bruce, K. R., Beach, O.L., “Effect of Sulfur Dioxide on the Formation Mechanism of Polychlorinated Dibenzodioxin and Dibenzofuran Municipal Waste Combustors”, Environmental Science & Technology, Vol.26, pp.1938-1943 (1992)
Gandhi, H. S., Graham, G. W., McCabe, R. W., “Automotive Exhaust Catalysis”, Journal of Catalysis, Vol. 216, pp. 433-442 (2003)
Griffin, R.D., “A New Theory of Dioxin Formation in Municipal Solid Waste Combustion”, Chemosphere, Vol. 15, pp. 1987-1990 (1986).
Hums, E., Joisten, M., Müller, R., Sigling, R. and Spielmann, H., “Innovative Lines of SCR Catalysis: NOx Reduction for Stationary Diesel Engine Exhaust Gas and Dioxin Abatement for Waste Incineration Facilities”, Catalysis Today, Vol. 27, pp. 29-34 (1996).
Houser, T. J., M. E. Mcarville and Gu. Z. Ying, “Nitric-Oxide Formationfrom Fuel Nitrogen Model-Compound,” Fuel , Vol. 67, pp. 642-650 (1988).
Haynes, B. S., D. Iverach and N. Y. Kirov, “The Behavior of Nitrogen Species in Fuel Rich Hydrocarbon Flames,” in Fifteenth Symposium (International) on Combustion, The Combustion Institute, Pittsburgh, PA, 1103-1112 (1975).
Hagenmaier, H., Jraft, M., Brunner, H., Haag, R., “Catalytic Effect of Fly Ash from Waste Incineration Facilities on the Formation and Decomposition of Polychlorinated Dibenzo-p-dioxions and Polychlorinated Dibenzofurans”, Environmental Science & Technology, Vol.21, pp.1080-1084(1987)
Ide, Y., K. Kashiwabara, S. Mori, T. Okada and M. Hara, “Catalytic Decomposition of Dioxin from MSW Incinerator Flue Gas”, Chemosphere, Vol. 32, pp. 189-198 (1996)
Jung, S.M. and Grange, P., “DRIFTS Investigation of V=O Behavior and its Relations with the Reactivity of Ammonia Oxidation and Selective Catalytic Reduction of NO over V2O5 Catalyst” Applied Catalysis B: Environmental, Vol.36, pp. 325-332 (2002)
Liljelind, P., Unsworth, J., Maaskant, O. and Marklund, S., “Removal of Dioxins and Related Aromatic Hydrocarbons from Flue Gas Streams by Adsorption and Catalytic Destruction”, Chemosphere, Vol. 42, pp. 615-623 (2001).
Lomnicki, S., J. Lichtenberger, Z. Xu, M. Waters, J. Kosman and M.D. Amiridis, “Catalytic Oxidation of 2,4,6-trichlorophenol Over Vanadia/titania-based Catalysts”, Applied Catalysis B: Environmental, Vol. 46, pp. 105-119 (2003).
Luijk, R., Akkerman, D.M., Slot, P. and Olie, K., “Mechanism of Formation of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in the Catalyzed Combustion of Carbon”, Environmental Science & Technology, Vol. 28, pp. 312-321 (1994).
Lee, D. K., Cho, J. S., Yoon, W. L., “Catalytic Wet Oxidation of Ammonia: Why is N2 Formed Preferentially Against NO3- ? ”, Chemosphere, Vol. 61, pp. 573- 578 (2005)
McKay, G., “Dioxin Characterisation Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review”, Chemical Engineering Journal, Vol. 86, pp. 343-368 (2002).
Martín, Y. M., Pedro, A., Silvia, S. and Jesús, B., “Nitrous Oxide Formation in Low Temperature Selective Catalytic Reduction of Nitrogen Oxides with V2O5/TiO2 Catalysts”, Applied Catalysis B: Environmental, Vol. 70, pp. 330-334 (2007).
Miller, G. T., Jr., Environmental Science Fourth ed., California, Wadsworth, (1992).
Milligan, M. S. and Altwicker, E., “Formation of Dioxins: Competing Rates between Chemical Similar Precursors and De Novo Reaction”, Environmental Science & Technology, Vol. 27, pp. 1595-1601 (1993).
Ozkan, U. S., Cai, Y., Kumthekar, M. W., “Investigation of the Reaction Pathways in Selective Catalytic Reduction of NO with NH3 over V2O5 Catalysts: Isotopic Labeling Studies Using 18O2, 15NH3, 15NO, and 15N18O ” , Journal of Catalysis, Vol. 149, pp. 390-403 (1994)
Ozkan, U. S., Cai, Y., Kumthekar, M. W., “Investigation of the Mechanism of Ammonia Oxidation and Oxygen Exchange over Vanadia Catalysts Using N-15 and O-18 Tracer Studies”, Journal of Catalysis, Vol. 149, pp. 375-389 (1994)
Pe′rez-Ramı′rez, J., Lo′pez, N., Kondratenko, E. V., “Pressure and Materials Effects on the Selectivity of RuO2 in NH3 Oxidation ”, The Journal of Physical Chemistry C, Vol. 114, pp. 16660–16668 (2010)
Qin, J., Aika, K., “Catalytic Wet Air Oxidation of Ammonia Over Alumina Supported Metals ”, Applied Catalysis B: Environmental ,Vol. 16, pp. 261-268 (1998)
Shaub, W. M. and Tsang, W., “Dioxin Formation in Incinerators”, Environmental Science & Technology, Vol. 17, pp. 721-730 (1983).
Sun, R. D., Irie, H., Nishikawa, T., Nakajima, A., Watanabe, T., Hashimoto, K., “Suppressing Effect of CaCO3 on the Dioxins Emission from Poly(vinylchloride) (PVC) Incineration”, Polymer Degradation and Stability, Vol. 79, pp. 253-256(2003)
Weber, R., Sakurai T., Hagenmaier H., “Low Temperature Decomposition of PCDD/PCDF, Chlorobenzenes and PAHs by TiO2-based V2O5-WO3 Catalysts”, Applied Catalysis B: Environmental, Vol. 20, pp. 249-256 (1999)
Weber, R. and Sakurai, T., “Low Temperature Decomposition of PCB by TiO2-based V2O5-WO3 Catalyst: Evaluation of the Relevance of PCDF Formation and Insights into the First Step of Oxidative Destruction of Chlorinated Aromatics”, Applied Catalysis B: Environmental, Vol. 34, pp. 113-127 (2001)
Yim, S. D., Koh, D. J., Nam, I. S., “A Pilot Plant Study for Catalytic Decomposition of PCDDs/PCDFs over Supported Chromium Oxide Catalysts”, Catalysis Today, Vol. 75, pp. 269-276 (2002)
Yan, N., Chen, W., Chen, J., Qu, Z., Guo, Y., Yang, S., Jia, J., “Significance of RuO2 Modified SCR Catalyst for Elemental Mercury Oxidation in Coal-fired Flue Gas ” Environmental Science & Technology, Vol.45, pp.5725-5730 (2011)
楊文毅,“鈀觸媒氧化焚化廢氣中有機物之研究”,國立中興大學環工所碩士論文,2000。
賴正昕, 劉國棟, 黃自立 (1996), ”選擇性觸媒還原法排煙脫硝系統控制實務”, 工業污染防治, 第57 期, 110-126.
吳榮宗,“工業觸媒概論”,國興出版社,1989。
翁澤民,“觸媒焚化處理氣相甲苯之研究”,國立中山大學環工所碩士論文,2004
指導教授 張木彬(Moo-Been Chang) 審核日期 2012-8-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明