博碩士論文 993203016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:18.216.208.243
姓名 周柏先(Po-Hsien Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 顆粒物質受束制壓力負載之力學分析
(Mechanical Response of Granular Solid under Confined Compression)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究主旨在探討聚苯乙烯顆粒物質在壓克力容器中受頂部束制壓力負載之力學行為,並探討不同顆粒大小以及顆粒堆高度對於相關力學行為之影響。透過不同高度位置應變之量測及廣義虎克定律,探討顆粒堆之應力隨高度變化之情形。實驗用聚苯乙烯顆粒之直徑大小分別為 4.5 mm及6 mm,填充高度分別為100 mm及200 mm,藉以分析顆粒堆高度及顆粒大小對顆粒體受束制壓力負載力學響應之影響。另以商業用離散元素法分析軟體模擬6 mm直徑之顆粒填充於壓克力容器內200 mm 之高度所得到的計算結果與實驗數據相比對。
實驗結果顯示,在束制壓力負載過程中,不論顆粒大小以及顆粒填充之高度,隨著頂部力量值增加,顆粒體與壓克力容器之間之摩擦力也隨之增加。於過程中顆粒受壁面摩擦力之影響,顆粒堆內相關應力值由高處往低處遞減。在具有相同顆粒大小分別填充不同高度進行束制壓力負載下,較高填充高度的顆粒堆,其應力在頂部與底部之差距較大。將兩種不同顆粒大小分別填充相同高度,小顆粒於束制壓力負載時,顆粒堆上層部分之應力差距較大顆粒為明顯;而小顆粒於顆粒堆下層部分之應力差距相較於大顆粒為小。離散元素法模擬求得之顆粒體垂直應力與水平應力、壓克力壁面與顆粒體間之剪應力、側壓力係數以及整體壁面與顆粒摩擦係數皆與實驗之趨勢相符,因而證明模擬之結果之有效性。
摘要(英) The purpose of this study is to investigate the mechanical responses of polystyrene particles stored in acrylic cylinders with different particle sizes and heights of the granular solid during confined compression test. Variations of wall strains are measured using strain gages at three axial positions and used to calculate the relevant stresses through a generalized Hooke’s law. Two diameters of the polystyrene spheres, 4.5 mm and 6 mm, and two heights of the granular solid, 100 mm and 200 mm, are selected to study the effects of particle size and granular solid height on the confined compression test results. The experimental data of a 200-mm-height granular solid of 6-mm-diameter polystyrene spheres are compared with the simulations calculated by a commercial code of discrete element method (DEM).
Experimental results show that frictional force between the granular solid and the cylinder wall increases with the top force during the confined compression. The frictional force between the particles and the cylinder wall makes the stresses decrease with increasing depth in the granular solid. Given a particle size, the differences of the stresses between the higher position and the lower position in a higher granular solid are greater than those in a shorter granular solid. Given a height of granular solid stored in an acrylic cylinder, variation of the stresses at the upper position for smaller particles is larger than that for larger particles while variation of the stresses at the lower position for a smaller particle size is smaller than that of a larger particle size. DEM solutions show a good agreement with the experimental data of vertical stress, horizontal stress, shear stress, lateral pressure ratio, and bulk wall friction in a confined compression test.
關鍵字(中) ★ 應力
★ 束制壓力負載實驗
★ 顆粒體
關鍵字(英) ★ stress
★ confined compression test
★ granular material
論文目次 TABLE OF CONTENTS
Page
LIST OF TABLES V
LIST OF FIGURES VI
1. INTRODUCTION 1
1.1 Storage of Granular Materials 1
1.2 Discrete Element Method (DEM) 2
1.3 Linkage of DEM and FEM 3
1.4 Confined Compression Test 4
1.5 Purpose and Scope 5
2. EXPERIMENTAL PROCEDURES 7
2.1 Confined Compression Test 7
2.2 Mechanical Properties and Experimental Procedure 8
2.3 DEM-FEM Implementation and Model Parameters 13
3. RESULTS AND DISCUSSION 15
3.1 Mechanical Response of Granular Solid 15
3.2 Effect of Cylinder Length and Height of Granular Solid 18
3.3 Effect of Particle Size 20
3.4 Comparison of Experimental Results and DEM-FEM Simulation 24
4. CONCLUSIONS 30
REFERENCES 32
TABLES 35
FIGUURES 36
LIST OF TABLES
Page
Table 1 Material properties of acrylic cylinder [23,24] 35
Table 2 Material properties of 6-mm-polystyrene particles [25] 35
Table 3 DEM input parameters for 6-mm-diameter spherical polystyrene particles 35
Table 4 Material properties of 4.5-mm-polystyrene particles 35
LIST OF FIGURES
Page
Fig. 1 A confined compression test apparatus for bulk solid. [20] 36
Fig. 2 Schematic of an experimental setup of confined compression test. 37
Fig. 3 Photograph of the experimental setup. 38
Fig. 4 Top and side views of a 160-mm-long acrylic cylinder. 39
Fig. 5 Top and side views of a 260-mm-long acrylic cylinder. 40
Fig. 6 A Hertz-Mindlin contact force model between two particles. [28] 41
Fig. 7 Vertical forces at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 42
Fig. 8 Average vertical stresses at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 43
Fig. 9 Average horizontal stresses at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 44
Fig. 10 Average shear stresses at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 45
Fig. 11 Lateral pressure ratios at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 46
Fig. 12 Bulk wall friction at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 47
Fig. 13 Vertical forces at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 48
Fig. 14 Average vertical stresses at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 49
Fig. 15 Average horizontal stresses at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 50
Fig. 16 Average shear stresses at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 51
Fig. 17 Lateral pressure ratios at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 52
Fig. 18 Bulk wall friction at different positions of the granular solid during confined compression for 6-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 53
Fig. 19 Vertical forces at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 54
Fig. 20 Average vertical stresses at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 55
Fig. 21 Average horizontal stresses at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 56
Fig. 22 Average shear stresses at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 57
Fig. 23 Lateral pressure ratios at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 58
Fig. 24 Bulk wall friction at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 260-mm-long cylinder. 59
Fig. 25 Vertical forces at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 60
Fig. 26 Average vertical stresses at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 61
Fig. 27 Average horizontal stresses at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 62
Fig. 28 Average shaer stresses at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 63
Fig. 29 Lateral pressure ratios at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 64
Fig. 30 Bulk wall friction at different positions of the granular solid during confined compression for 4.5-mm-diameter polystyrene spheres in a 160-mm-long cylinder. 65
Fig. 31 Load-displacement responses of the granular solid in an acrylic cylinder during confined compression. 66
Fig. 32 Load-displacement responses of the granular solid in a stainless steel cylinder during confined compression. 67
Fig. 33 Variations of vertical stress with axial position in the granular solid under different top forces: (a) 500 N; (b) 1,000 N; (c) 1,500 N; (d) 2,000 N. 68
Fig. 34 Variations of horizontal stress with axial position in the granular solid under different top forces: (a) 500 N; (b) 1,000 N; (c) 1,500 N; (d) 2,000 N. 70
Fig. 35 Variations of shear stress with axial position in the granular solid under different top forces: (a) 500 N; (b) 1,000 N; (c) 1,500 N; (d) 2,000 N. 72
Fig. 36 Lateral pressure ratio versus top force at various positions of the granular solid: (a) 8/10 height; (b) 5/10 height; (c) 2/10 height. 74
Fig. 37 DEM predictions of lateral pressure ratio versus axial position of granular solid during confined compression. 76
Fig. 38 Bulk wall friction versus top force at various positions of the granular solid: (a) 8/10 height; (b) 5/10 height; (c) 2/10 height. 77
Fig. 39 DEM predictions of bulk wall friction versus axial position of granular solid during confined compression. 79
Fig. 40 Axial stress versus top force at various positions of the acrylic cylinder: (a) top; (b) middle; (c) bottom. 80
Fig. 41 Hoop stress versus top force at various positions of the acrylic cylinder: (a) top; (b) middle; (c) bottom. 82
Fig. 42 FEM predictions of average axial stress versus axial position of acrylic cylinder during confined compression. 84
Fig. 43 FEM predictions of average hoop stress versus axial position of acrylic cylinder during confined compression. 85
參考文獻 REFERENCES
1. H. J. Herrmann, “Granular Matter,” Physica A, Vol. 313, pp. 188-210, 2002.
2. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, A. Kong, P. J. Narayan, and B. C. Hancock, “Granular Segregation in Discharging Cylindrical Hoppers: A Discrete Element and Experimental Study,” Chemical Engineering Science, Vol. 62, pp. 6423-6439, 2007.
3. A. J. Sadowski and J. M. Rotter, “Study of Buckling in Steel Silos under Eccentric Discharge Flows of Stored Solids,” Journal of Engineering Mechanics, Vol. 136, pp. 769-776, 2010.
4. K. Nasako, Y. Ito, N Hiro, and M. Osumi, “Stress on a Reaction Vessel by the Swelling of a Hydrogen Absorbing Alloy,” Journal of Alloys and Compounds, Vol. 264, pp. 271-276, 1998.
5. F. Qin, L. H. Guo, J. P. Chen, and Z. J. Chen, “Pulverization, Expansion of La0.6Y0.4Ni4.8Mn0.2 During Hydrogen Absorption-Desorption Cycle and Their Influences in Thin-Wall Reactors,” International Journal of Hydrogen Energy, Vol. 33, pp. 709-717, 2008.
6. Y. C. Chung and J. Y. Ooi, “Linking of Discrete Element Modelling with Finite Element Analysis for Analysing Structures in Contact with Particulate Solid,” Powder Technology, Vol. 217, pp. 107-120, 2012.
7. P. A. Cundall and O. D. L. Strack, “A Discrete Numerical-Model for Granular Assemblies,” Geotechnique, Vol. 29, pp. 47-65, 1979.
8. Y. C. Chung and J. Y. Ooi, “Benchmark Tests for Verifying Discrete Element Modelling Codes at Particle Impact Level,” Granular Matter, Vol. 13, pp. 643-656, 2010.
9. W. R. Ketterhagen, J. S. Curtis, C. R. Wassgren, and B. C. Hancock, “Predicting the Flow Mode from Hoppers Using the Discrete Element Method,” Powder Technology, Vol. 195, pp. 1-10, 2009.
10. H. Tao, B. Jin, W. Q. Zhong, X. F. Wang, B. Ren, Y. Zhang, and R. Xiao, “Discrete Element Method Modeling of Non-Spherical Granular Flow in Rectangular Hopper,” Chemical Engineering and Processing: Process Intensification, Vol. 49, pp. 151-158, 2010.
11. C. C. Kwan, H. Mio, Y. Q. Chen, Y. L. Ding, F. Saito, D. G. Papadopoulos, A. C. Bentham, and M. Ghadiri, “Analysis of the Milling Rate of Pharmaceutical Powders Using the Distinct Element Method (DEM),” Chemical Engineering Science, Vol. 60, pp. 1441-1448, 2005.
12. P. W. Cleary, M. D. Sinnott, and R. D. Morrison, “Is Media Shape Important for Grinding Performance in Stirred Mills?,” Minerals Engineering, Vol. 24, pp. 138-151, 2011.
13. K. W. Chu, B. Wang, A. B. Yu, and A. Vince, “CFD-DEM Modelling of Multiphase Flow in Dense Medium Cyclones,” Powder Technology, Vol. 193, pp. 235-247, 2009.
14. S. E. Naeini and J. K. Spelt, “Two-Dimensional Discrete Element Modeling of a Spherical Steel Media in a Vibrating Bed,” Powder Technology, Vol. 195, pp. 83-90, 2009.
15. J. Wiącek, M. Molenda, J. Horabik, and J. Y. Ooi, “Influence of Grain Shape and Intergranular Friction on Material Behavior in Uniaxial Compression: Experimental and DEM Modeling,” Powder Technology, Vol. 217, pp. 435-442, 2009.
16. A. Munjiza, The Combined Finite-Discrete Element Method, John Wiley & Sons Ltd., London, UK, 2004.
17. K. Han, D. Peric, A. J. L. Crook, and D. R. J. Owen, “A Combined Finite/Discrete Element Simulation of Shot Peening Processes–Part I: Studies on 2D Interaction Laws,” Engineering Computations, Vol. 17, pp. 593-619, 2000.
18. K. Han, D. Peric, D. R. J. Owen, and J. Yu, “A Combined Finite/Discrete Element Simulation of Shot Peening Processes—Part II: 3D Interaction Laws,” Engineering Computations, Vol. 17, pp. 680-702, 2000.
19. A. Munjiza, T. Bangash, and N. W. M. John, “The Combined Finite-Discrete Element Method for Structural Failure and Collapse,” Engineering Fracture Mechanics, Vol. 71, pp. 469-483, 2004.
20. S. A. Masroor, L. W. Zachary, and R. A. Lohnes, “A Test Apparatus for Determining Elastic Constants of Bulk Solids,” pp. 553-558 in Proceedings of the 1987 SEM Spring Conference on Experimental Mechanics, Houston, Texas, USA, June 14-19, 1987.
21. Y. C. Chung and J. Y. Ooi, “Influence of Discrete Element Model Parameters on Bulk Behavior of a Granular Solid under Confined Compression,” Particulate Science and Technology, Vol. 26, pp. 83-96, 2008.
22. D. McGlinchey, Bulk Solids Handling: Equipment Selection and Operation, Blackwell Publishing Ltd., Oxford, UK, 2008.
23. eFunda, Inc., PMMA, http://www.efunda.com/materials/polymers/ (accessed 05.10.12).
24. W. T. Nakayama, D. R. Hall, D. E. Grenoble, and J. L. Katz, “Elastic Properties of Dental Resin Restorative Materials,” Journal of Dental Research, Vol. 53, pp. 1121-1126, 1974.
25. Engineering ToolBox, Polystyrene, http://www.engineeringtoolbox.com/ (accessed 05.17.12).
26. H. A. Janssen, “On the Pressure of Grain in Silos,” Proceedings of the Institution of Civil Engineers, Vol. 124, pp. 553-555, 1896.
27. Y. Tsuji, E. Tanaka, and T. Ishida, “Lagrangian Numerical Simulation of Plug Flow of Cohesionless Particles in a Horizontal Pipe,” Powder Technology, Vol. 71, pp. 239-250, 1992.
28. Y. C. Chung and J. Y. Ooi, “A Study of Influence of Gravity on Bulk Behaviour of Particulate Solid,” Particuology, Vol. 6, pp. 467-474, 2008.
29. J. M. Rotter, J. Holst, J. Y. Ooi, and A. M. Sanad, “Silo Pressure Predictions Using Discrete-Element and Finite-Element Analyses,” Physical and Engineering Sciences, Vol. 356, pp. 2685-1712, 1998.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2012-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明