博碩士論文 993203094 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:116 、訪客IP:18.216.21.252
姓名 董益銍(Yi-chih Dong)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 淨煤氣化合成氣貧油可燃極限與燃燒速度量測:壓力和紊流效應
(Measurements of Lean Flammability Limits and Burning Velocities for Clean Coal Gasification Syngas)
相關論文
★ 蚶線形滑轉板轉子引擎設計與實作★ 實驗分析預混紊焰表面密度傳輸方程式及Bray-Moss-Libby模式
★ 低紊流強度預混焰之傳播及高紊流強度預混焰之熄滅★ 預混火焰與尾流交相干涉之實驗研究
★ 自由傳播預混焰與紊流尾流交互作用﹔火焰拉伸率和燃燒速率之量測★ 重粒子於泰勒庫頁提流場之偏好濃度與下沈速度實驗研究
★ 潔淨能源:高效率天然氣加氫燃燒技術與污染排放物定量量測★ 預混焰與紊流尾流交互作用時非定常應變率、曲率和膨脹率之定量量測
★ 實驗方式產生之均勻等向性紊流場及其於兩相流之應用★ 液態紊流噴流動能消散率場與微尺度間歇性 之定量量測
★ 預混焰和紊流尾流交互作用:拉伸率與輻射熱損失效應量測★ 四維質點影像測速技術與微尺度紊流定量量測
★ 潔淨能源:超焓燃燒器研發★ 小型熱再循環觸媒燃燒器之實驗研究及應用
★ 預混紊流燃燒:碎形特性、當量比 和輻射熱損失效應★ 預混甲烷紊焰拉伸量測,應用高速PIV
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文實驗探討淨煤挾帶流氣化合成氣(氫/一氧化碳)之應用燃燒技術,針對不同氫氣/一氧化碳比例合成氣於常壓與高壓條件下,量測其貧油可燃極限,以及層流與紊流燃燒速度(ST和SL)。所有實驗均於本實驗室已建立大型高壓、雙腔體設計之預混燃燒設施平台,該平台由一內爐與一外爐所組成。內爐為本實驗室已發展多年之十字型燃燒器所設計而成,它由水平與垂直鋼管所構成,透過水平腔體底端兩側適合於高壓環境下操作之兩組三相十匹馬力之馬達,反向旋轉左右設之特製風扇並配合空孔板,可於十字型燃燒器中心處區域產生一近似等向性之紊流場。外爐為一大型高壓氣密保護腔體,可於內爐實驗過程中,即中心引燃往外傳播火焰爆炸過程中,吸收由內爐垂直腔體上四個靈敏的釋壓閥所釋放之壓力。利用高速高解析度攝影機,量測中心引燃往外傳播預混火焰之動態傳遞時序影像,經影像分析火焰拉伸率和密度校正計算後,可獲得ST和SL值。
有關層流預混火焰實驗,我們針對貧油條件當量比(??為?0.4 ~ 1.0三種不同比例50%CO/50%H2、65%CO/35%H2和95%CO/5%H2之合成氣燃料,量測其在不同壓力(p)1 ~ 5大氣壓條件下,SL與可燃極限。結果顯示,隨著p增加,不僅SL值降低,並且貧油可燃極限也會擴展。此外,當?值越接近其貧油可燃極限時,SL值對p增加之效應會更加敏感,但當?值接近化學計量比時(??= 1),則較不敏感。接著依不同合成氣比例的結果來看,隨著氫濃度比例增加,會有更高的SL值,且SL值對p之敏感度會降低,而其貧油可燃極限會有向下擴展之趨勢。
有關紊流預混火焰我們針對(65%CO/35%H2)在??= 0.5時,量測其高壓紊流燃燒速度,壓力範圍從1大氣壓到10大氣壓,特別指出不同於先前研究的地方,即本實驗中心引燃往外傳播之球狀紊焰是在固定紊流雷諾數(ReT ? u?LI/?)條件下所獲得。我們調控方均根紊流擾動速度(u?)與紊流積分長度尺度(LI),使其乘積與因p值提升而下降的運動黏性係數(?)做等比例調整,以進行固定ReT之實驗量測,其實驗條件有四個不同ReT值:6,700, 9,100, 11,600, 14,200。結果顯示,相反於一般ST隨p增加而上升(p上升,?下降,ReT增加),在ReT固定條件。我們發現 ST下降趨勢相似於SL,兩者均會隨p增加呈現指數下降之關係,例如ST ~p-0.49在ReT = 14,200。此外,在任一固定p值,正規化紊流燃燒速度(ST/SL)會隨ReT值增加而有顯著增加,顯示ReT之重要性。前述在不同p和ReT之大範圍散佈ST/SL數據,可被聚合成一曲線關係 ST /u? = 0.49Da0.25,其中Da為紊流Damkohler數,此關係式也於Zimont學者提出之理論解ST /u? ~ Da0.25相同,但於過去本實驗團隊針對於貧油甲烷然氣所進行等ReT實驗結果不同,後者ST /u? = 0.14Da0.5,兩者有不同之Da冪次關係。我們將探討壓力、火焰不穩定性與紊流尺度等效應,嘗試解釋前述不同Da冪次之結果。本研究結果對未來應用於高氫比例之合成氣諸如燃氣輪機、工業爐和其他燃燒器將有重要之助益。
摘要(英) This thesis studies experimentally high-pressure lean syngas (hydrogen/carbon monoxide) combustion characteristics derived from the clean coal entrained-flow gasifier. Focuses are placed on measurements of lean flammability limits and laminar and turbulent burning velocities (ST and SL) for various compositions of H2/CO mixtures. Experiments are carried out in a large high-pressure, double-chamber (an inner chamber and an outer chamber) premixed turbulent combustion facility. The inner chamber applies the same design of our previous cruciform burner that was constructed by two mutually crossing cylindrical vessels, a horizontal vessel and vertical vessel, forming a cruciform shape. Using two identical frequency-controlled counter-rotating fans and perforated plates at the two ends of the horizontal vessel, an intense near-isotropic turbulent flow field can be generated in the central region of the inner chamber. As to the outer chamber, it is a large high-pressure airtight chamber used to absorb the pressure rise releasing from the inner chamber via four sensitive pressure-releasing valves. These four valves are placed symmetrically in the front and back sides of the vertical vessel. A high-speed, high-resolution CMOS camera system used to directly record flame propagation images and thus flame burning velocities can be determined from image analysis with flame strain rate calculation and the density correction.
Concerning laminar premixed syngas experiments, we measure the lean flammability limits and laminar burning velocities at various equivalent ratios from ??= 0.4 ~ 1.0 with three different syngas fuel compositions, namely 50%CO/50%H2, 65%CO/35%H2 and 95%CO/5%H2, each covering an initial pressure (p) range from 1 atm to 5 atm. Results show that by increasing p, not only values of SL decrease but also lean flammability limits can be expanded. It is found that the effect of p on SL is more sensitive when ? is close to the lean flammability limit than near the stoichiometry (? = 1). As to the effect of hydrogen compositions, the higher hydrogen concentration is, the higher value of SL and the wider range of lean flammability limits. On the other hand, the effect of p on SL is diminished at higher hydrogen concentrations.
For turbulent premixed syngas flames, we measure high-pressure ST of lean premixed syngas mixtures (35%H2/65%CO) at ??= 0.5 covering a wide range of pressure from p = 0.1 MPa to 1.0 MPa. Note that the present measurements differ with previous studies, because we keep the turbulent Reynolds numbers (ReT ? u?LI/?) constant by adjusting the root-mean-square turbulent fluctuation velocity (u?) and the integral length scale (LI) in proportion to the decreasing kinematic viscosity of reactants (?) at elevated pressure. Results show that, contrary to popular scenario for turbulent flames, when ReT is fixed, ST decreases similarly as SL with increasing p in minus exponential manners, ST ~ p-n, where n ≈ 0.5 almost independent of ReT. Moreover, at any fixed p, values of ST/SL increase noticeably with increasing ReT. It is found that these very scattering ST/SL data over very wide ranges of p and ReT can be merged onto a single curve having a relation of ST/u? = 0.49Da0.25, where Da is the turbulent Damkohler number. This experimental relation supports a theoretical prediction proposed by Zimont. However, such relation is different from our previous finding for lean methane mixtures where ST/u? = 0.14Da0.5 using the same facility and at the same p and ReT. We shall discuss the effects of pressure, flame instability and turbulence scale in attempt to address the aforementioned discrepancy in the exponential power constants of the Da dependence between lean syngas and methane mixtures. These results should be important when applying syngas fuels with higher hydrogen compositions to gas turbines, industrial furnaces, and other various burners.
關鍵字(中) ★ 層流和紊流燃燒速度
★ 紊流Damkohler數
★ 紊流雷諾數
★ 高壓預混貧油合成氣燃燒
★ 氫氣/一氧化碳合成氣
★ 貧油可燃極限
關鍵字(英) ★ lean high-pressure premixed turbulent combustion
★ lean flammability limit
★ laminar and turbulent burning velocities
★ Hydrogen/carbon monoxide syngas
★ turbulent Damkohler number.
★ turbulent Reynolds number
論文目次 摘要 I
Abstract III
致謝 V
圖目錄 IX
符號說明 XI
第一章 前言 1
1.1 研究動機 1
1.2 問題所在 2
1.3 解決方案 3
1.4 論文架構 4
第二章 文獻回顧 7
2.1 可燃極限定義 7
2.2 各參數對可燃極限之影響 7
2.2.1壓力對於可燃極限之影響 7
2.2.2火焰傳遞方向對可燃極限之影響 8
2.2.3混合燃料之可燃極限 8
2.3紊流燃燒理論 9
2.4火焰傳遞 12
2.4.1火焰拉伸 13
2.4.2拉伸與火焰傳遞 14
2.5 火焰不穩定性 14
2.5.1 熱擴散不穩定性 14
2.5.2 流力不穩定性 15
2.5.3 浮力不穩定性 16
2.6壓力效應 17
2.6.1 壓力對層流火焰傳播影響 17
2.6.2 壓力對紊流火焰傳播影響 18
2.7 雷諾數對高壓紊流燃燒速度之影響 20
2.8火焰幾何形狀對紊流燃燒速度之影響 21
第三章 實驗設備與量測方法 27
3.1 高壓預混紊流十字型燃燒系統 27
3.2 高功率脈衝放電系統及引燃能量計算 28
3.3 高速影像擷取系統 29
3.4 實驗參數計算 30
3.4.1 燃氣當量比 30
3.4.2 火焰傳遞速度 31
3.4.3 有效 Lewis Number 31
3.5實驗流程 32
第四章 結果與討論 37
4.1可燃極限與層流燃燒速度量測 37
4.1.1層流燃燒速度計算方法 37
4.1.2可燃極限之量測方法 39
4.1.3 壓力效應對於層流燃燒速度之影響 39
4.1.4 壓力效應對於可燃極限之影響 41
4.1.5 燃氣比例對於可燃極限之影響 41
4.2 紊流火焰傳播機制 42
4.2.1 紊流合成氣火焰傳遞 42
4.2.2於平均傳遞變數為 0.5量測之合成氣紊流燃燒 43
4.2.3等雷諾數下壓力對紊焰燃燒速度影響 45
4.3紊流燃燒速度通式 48
10. 第五章 結論與未來工作 74
5.1 結論 74
5.2 未來工作 75
11. 參考文獻 77
12. 附錄A 84
13. 附錄B 86
參考文獻 [1] The Department of Energy (DOE). http://www.doe.gov/.
[2] Rezaiyan, J. and Cheremisinoff N. P., Gasification Technologies: A Primer for Engineers and Scientists. Boca Raton, FL: Taylor & Francis, 2005.
[3] Peters, N., Turbulent Combustion, Cambridge University Press, Cambridge, 2000.
[4] Dricoll, J. F., “Turbulent premixed combustion: Flamelet structure and its effect on turbulent burning velocities”, Prog. Energy Combust. Sci., Vol. 34, pp. 91-134, 2008.
[5] 林文基,“甲烷與丙烷預混紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,1999年。
[6] 陳彥志,“高效率天然氣加氫燃燒技術與汙染物定量量測”,國立中央大學機械工程研究所,碩士論文,2002年。
[7] 石偉達,“預混紊流燃燒:火花引燃機制與加氫效應之定量量測”,國立中央大學能源工程研究所,碩士論文,2007年。
[8] 李尚軍,“火花引燃機制與散佈狀燃燒形態之實驗研究”,國立中央大學機械工程研究所,碩士論文,2008年。
[9] 陳幸中,“高壓預混甲烷燃燒:層焰與紊焰傳播速度量測”,國立中央大學機械工程研究所,碩士論文,2009年。
[10] 彭明偉,“中央引燃往外傳播預混火焰在高壓條件下之層流和紊流燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2010年。
[11] Ichikawa Y., Otawara Y., Kobayashi H., Ogami Y., Kudo T., Okuyama M. and Kadowaki S., “Flame structure and radiation characteristics of CO/H2/CO2/air turbulent premixed flames at high pressure”, Proc. Combust. Inst., Vol. 33, pp. 1543-1550, 2011.
[12] Liu, C. C., Shy, S. S., Chiu, C. W., Peng, M. W. and Chung, H. J., “Hydrogen/carbon monoxide syngas burning rates measurements in high-pressure quiescent and turbulent environment”, Int. J. Hydrog. Energy., Vol. 36, pp. 8595-8603, 2011.
[13] Shy, S. S., Lin, W. J. and Wei, J. C., “An Experimental Correlation of Turbulent Burning Velocities for Premixed Turbulent Methane-Air Combustion”, Proc. R. Soc. Lond., Vol. A 456, pp. 1997-2019, 2000.
[14] Shy, S. S., Lee, E. I., Cheng, N. W. and Yang, S. I., “Direct and Indirect Measurements of Flame Surface Density, Orientation, and Curvature for Premixed Turbulent Combustion Modeling in a Cruciform Burner”, Proc. Combust. Inst., Vol. 28, pp. 383-390, 2000.
[15] Liu, C. C., Shy, S. S., Chen, H. C. and Peng, M. W., “On Interaction of Centrally-Ignited, Outwardly-Propagating Premixed Flames with Fully-Developed Isotropic Turbulence at Elevated Pressure” Proc. Combust. Inst., Vol. 33 , pp. 1293-1299, 2011.
[16] Higman C, van der Burgt M. Gasification. 2nd ed. Amsterdam: Gulf Professional Publishing; 2008.
[17] Chiu, C. W., Dong, Y. C. and Shy, S. S., “High-pressure hydrogen/carbon monoxide syngas turbulent burning velocities measured at constant turbulent Reynolds numbers” , Int. J. Hydrog. Energy., Vol. 37, pp. 10935-10946, 2012.
[18] Kim, N. I., Kataoka, T., Maruyama, S. and Maruta, K., “Flammability limits of stationary flames in tubes at low pressure” Combust. Flame, Vol. 141, pp. 78-88, 2005.
[19] Jones, G. W. and Kennedy, R. E., “Inflammability of natural gas: effect of pressure upon the limits“ Rep. Invest. U.S. Bur. Min. No.3798,1945
[20] Coward, H. F. and Jones, G. W., “Limits of flammability of gases and vapors“Rep. Invest. U.S. Bur. Min. No.503,1952
[21] Chatelier, H. Le, “Estimation of firedamp by flammability limits“ Ann Mines 19 pp 388-395,1891
[22] Damkohler, G., “The Effect of Turbulent on the Flame Velocity in Gas Mixtures”, Z. Elektrchem., Vol. 46, pp. 601-652, 1940. (English translation NASA Tech. Mem. 1112, (1947).
[23] Williams, F. A., Combustion Theory, 2nd Ed., Addison-Wesley, Redwood City, 1985.
[24] Bray, K. N. C., “Turbulent Flows with Premixed Reactants,” Turbulent Reacting Flows, Eds. Libby, P. A. & Williams, F. A., pp. 115-183, New York, Springer-Verlag, 1980.
[25] Borghi, R., “On the Structure and Morphology of Turbulent Premixed Flames”, Recent Advances in the Aerospace Sciences, Ed. C. Casci, pp. 117-138, New York, Plenum, 1985.
[26] Peters, N., “Laminar Flamelet Concepts in Turbulent Combustion”, Proc. Combust. Inst., Vol. 21, pp. 1231-1250, 1986.
[27] Peters, N., “The turbulent burning velocity for large-scale and small-scale turbulence”, J. Fluid Mech., Vol. 384, pp. 107-132, 1999.
[28] Shy, S. S., Shin, W. T., Liu, C. C., “More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes”, Combust. Sci. and Tech., Vol. 180, pp. 1735-1747, 2008.
[29] Shy, S. S., Shin, W. T. and Liu, C. C., “More on Minimum Ignition Energy Transition for Lean Premixed Turbulent Methane Combustion in Flamelet and Distributed Regimes”, Combust. Sci. and Tech., Vol. 180, pp. 1735-1747, 2008.
[30] Bradley, D., Cresswell, T. M. and Puttock, J. S. “Flame Acceleration Due to Flame-Induce Instabilities in Large-Scale Explosions”, Combust. Flame, Vol. 124, pp. 551-559, 2001.
[31] Kido, H. and Nakahara, M., “A Mode of Turbulent Burning Velocity Taking the Preferential Diffusion Effect into Consideration”, JSME Int. J., Ser., Vol. B 41(3), pp. 666-673, 1998.
[32] Bradley, D., Gaskell, P. H. and Gu, X. J., “Burning Velocities, Markstein Lengths, and Flame Quenching for Spherical Methane-Air Flame: A Computational Study”, Combust. Flame, Vol. 104, pp. 176-198, 1996.
[33] Markstein, G. H., Nonsteady Flame Propagation, Pergamon, 1964.
[34] Darrieus, G., “Propagation D’Un Front de Flamme: Assai de Theorie des Vitesses Anomales de Deflagration par Developpement Spontane de la turbulence”, Presented at 6th Int. Cong. Appl. Mech., Paris, 1938.
[35] Landau, L. D. and Lifshitz, E. M., Fluid Mechanics, Pergamon, Oxford, 1987.
[36] Law, C. K. and Sung, C. J., “Structure, Aerodynamics, and Geometry of Premixed Flamelet”, Prog. Energy Combust. Sci., Vol. 26, pp. 459-505, 2000.
[37] McLean I. C., Smith D. B. and Taylor S. C., “The use of carbon monoxide/hydrogen burning velocities to examine the rate of the CO + OH reaction”, Proc. Combust. Inst., Vol. 25 , pp. 749-757, 1994.
[38] Brown M. J., McLean I. C., Smith D. B. and Taylor S. C., “Markstein lengths of CO/H2/air flames, using expanding spherical flames”, Proc. Combust. Inst., Vol. 26 , pp. 875-881, 1996.
[39] Davis S. G., Joshi A. V., Wang H. and Egolfopoulos F.,“An optimized kinetic model of H2/CO combustion”, Proc. Combust. Inst., Vol. 30 , pp. 1283-1292, 2005.
[40] Natarajan J., Lieuwen T. and Seitzman J., “Laminar flame speeds of H2/CO mixtures: Effect of CO2 dilution, preheat temperature, and pressure”, Combust. Flame, Vol. 151, pp. 104-119, 2007.
[41] Hassan M. I., Aung K. T. and Faeth G. M., “Properties of laminar premixed CO/H2/air flames at various pressures”, J. Propul. Power, Vol. 13 , pp. 239-245, 1997.
[42] Sun H., Yang S. I., Jomaas G. and Law C. K., “High-pressure laminar flame speeds and kinetic modeling of carbon monoxide/hydrogen combustion”, Proc. Combust. Inst., Vol. 31 , pp. 439-446, 2007.
[43] Vu T. M., Park J., Kwon O. B., Bae D. S., Yun J. H. and Keel S.I., “Effects of diluents on cellular instabilities in outwardly propagating spherical syngase-air premixed flames”, Int. J. Hydrog. Energy, Vol. 35 , pp. 3868-3880, 2010.
[44] Venkateswarana P., Marshallb A.,Shina D. H., David N., Seitzmana J. and Lieuwena T., “Measurements and analysis of turbulent consumption speeds of H2/CO mixtures”, Combust. Flame, Vol. 158, pp. 1602-1614, 2011.
[45] Yakhot V., “Propagation Velocity of Premixed Turbulent Flames” Combust. Sci. and Tech., Vol. 60, pp. 191-214, 1988.
[46] Daniele S., Jansohn P., Mantzaras J. and Boulouchos K., “Turbulent flame speed for syngas at gas turbine relevant conditions”, Proc. Combust. Inst., Vol. 33, pp. 2937-2944, 2011.
[47] Lipatnikov, A. N., and Chomiak, J., “Turbulent flame speed and thickness: Phenomenology, evaluation, and application in multi-dimensional simulations” Prog Energy Combust Sci, Vol. 28, pp. 1-74, 2002.
[48] Bradley, D., Lawes, M., and Mansour, M. S., “Correlation of turbulent burning velcities of ethanol-air, measured in a fan-stirred bomb up to 1.2MPa” Combust. Flame Vol.158, pp. 123-158, 2011.
[49] Peters, N., “Turbulent Combustion” Cambridge University Press,2000.
[50] Bedat, B., and Cheng, R. K., “Experimental study of premixed flames in intense isotropic turbulence” Combust. Flame Vol.100, pp. 485-494,1995.
[51] Plessing, T., Kortschik, C., Peters, N., Mansour, M. S. and Chang, R. K., “Measurments of the turbulent burning velocity and the structure of premixed flames on a low-swirl burner” Proc. Combust. Inst., Vol. 28, pp. 359-366, 2000.
[52] Shy S. S., Lin W. J. and Peng K. Z., “High-intensity turbulent premixed combustion: General correlations of turbulent burning velocities in a new cruciform burner. , Proc. Combust. Inst., Vol. 28, pp. 561-568, 2000.
[53] Shy, S. S., I, W. K. and Lin, M. L., “A New Cruciform Burner and its Turbulence Measurements for Premixed Turbulent Combustion Study”, Exp. Thermal Fluid Sci., Vol. 25, pp. 1341-1347, 1994
[54] Yang, T. S., Shy, S. S. and Chyou, Y. P., “Spatiotemporal Intermittency Measurements in a Gas-Phase Near-Isotropic Turbulence Using High-Speed DPIV and Wavelet Analysis”, J. Mech., Vol. 21, pp. 157-169, 2005.
[55] Yang, T. S. and Shy, S. S., “Two-Way Interaction between Solid Particles and Homogeneous Air Turbulence: Particle Settling Rate and Turbulence Modification Measurements”, J. Fluid Mech., Vol. 526, pp. 171-216, 2005.
[56] Law C. K., Jomaas G. and Bechtold J. K., “Cellular instabilities of expanding hydrogen/propane spherical flames at elevated pressures: Theory and experiment”, Proc. Combust. Inst., Vol. 30, pp. 159-167, 2005.
[57] Ronney, P. D. and Wachman, H. Y., “Effect of gravity on laminar premixed gas combustion I: Flammability limits and burning velocities”, Combust. Flame Vol. 62, pp. 107-119,1995.
[58] Okajima, S., Iinuma, K., and Yamaguchi, S., “Measurement of slow burning velocities and their pressure dependence using a zero-gravity method”, Proc. Combust. Inst., Vol. 20, pp. 1951-1956, 1984.
[59] Glassman I. and Yetter R. A., Combustion. 4th ed. Amsterdam: Academic Press, 2008.
[60] Ouimette, P., and Seers, P., “Numerical comparison of premixed laminar flame velocity of methane and wood syngas” fuel, Vol. 88, pp. 528-533, 2009.
[61] 邱建文,“氫氣/一氧化碳合成氣於高壓層流與紊流環境下之燃燒速度量測”,國立中央大學機械工程研究所,碩士論文,2011年。
[62] Zimont, V. L., “Theory of turbulent combustion of a homogeneous fuel mixture at high Reynolds number” Combust, Expl, Shock Waves Vol. 15 pp. 305-311,1979.
[63] Liu, C. C., Shy, S. S., Peng, M. W., Chiu, C. W. and Dong, Y. C., “High-pressure burning velocities measurement for cetrally-ignited premixed mtthane/air flames intracting with intense near-isotropic turbulence at contant Reynolds numbers”, Combust. Flame, Vol. 159, pp. 2608-2619, 2012.
[64] Aldredge R. C., Vaezi V. and Ronney P. D., “Premixed-Flame Propagation in Turbulent Taylor–Couette Flow”, Combust. Flame, Vol. 115, pp. 395-405, 1998.
[65] Moreau P., Boutier A., “Laser velocimeter measurements in a turbulent flame”, Proc. Combust. Inst., Vol. 16, pp. 1747-1756, 1976.
指導教授 施聖洋(Shenqyang Steven Shy) 審核日期 2012-8-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明