參考文獻 |
[1] K. Hebel, R. Gajjar and T. Hofstede, “Single-tooth replacement: bridge vs. implant-supported restoration”, Journal of the Canadian Dental Association, Vol. 66, pp. 435-438, 2000.
[2] A.N. Cranin, “Oral Implantology”, Springfield, I11. Thomas, 1970.
[3] M. Kibrick, Z.A. Munir, H. Lash and S.S. Fox, “The development of a material system for an endosteal tooth implant”, Journal of Oral Implantology, Vol. 6, pp. 172-192, 1975.
[4] L.B. Shulman and T.D. Driskell, “Dental implant: A historical perspective. In: Block MS, Kent JN, Guerra LR (eds)”, Implant in dentistry, Philadelphia: W.B. Saunders co., pp.4-7, 1997.
[5] T.D. Taylor, “What is a dental implant? In: Peppers LG. (eds). Dental implant: Are they for me ?”, Iowa: Quintessence, pp.6-7, 1990.
[6] 林自勇、鄧志娟、陳瑩玲等譯,解剖生理學Essentials of Anatomy & Physiology,全威圖書,民國90年。
[7] 鄭敏雄,口腔應用解剖學,藝軒圖書出版社,民國90年。
[8] O. Kayabasi, E. Yuzbasioglu and F. Erzincanli, “Static, dynamic and fatigue behaviors of dental implant using finite element method”, Advances in Engineering Software, Vol. 37, pp.649-658, 2006.
[9] T.J. Balshi, “An Analysis and Management of Fractured Implants: A Clinical Report”, International Journal of Oral & Maxillofacial Implants, Vol. 11, pp660-666, 1996.
[10] M.D. Santos, A.B. Pfeifer, M.R. Silva, C.L. Sendyk and W.R. Sendyk, “Fracture of abutment screw supporting a cemented implant-retained prosthesis with external hexagon connection: a case report with sem evaluation”, Journal of Applied Oral Science, Vol. 15, pp. 148-151, 2007.
[11] L.T. Kirco and C.E. Misch, “Dental implant prosthetics”, Elsevier Mosby, 2005.
[12] A.R. Eriksson, T. Albrektsson and B. Albrektsson, “Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals”, Acta Orthopaedica Scandinavica, Vol. 55, pp. 629-631, 1984.
[13] M.T. Hillery and I. Shuaib, “Temperature effects in the drilling of human and bovine bone”, Journal of Materials Processing Technology, Vol. 92, pp. 302-308, 1999.
[14] C.K. Chao and C.C. Hsiao, “Parametric study on bone screw designs for holing power”, Journal of Mechanics, Vol. 22, No. 1, pp. 13-18, 2006.
[15] C.C. Hsu, C.K. Chao, J.L. Wang, S.M. Hou, Y.T. Tsai and J. Lin, “Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses”, Journal of Orthopaedic Research, Vol. 23, No. 4, pp. 788-794, 2005.
[16] S.M. Hou, C.C. Hsu, J.L. Wang, C.K. Chao and J. Lin, “Mechanical tests and finite element models for bone holding power of tibial locking screws”, Clinical Biomechanics, Vol. 19, No. 7, pp. 738-745, 2004.
[17] P. Chazistergons, G. Ferentinos, E.A. Magnissalis and S.K. Kourkoulis, “The pullout-out strength of transpedicular screws in posterior spinal fusion”, Fracture of Nano and Engineering Materials and Structures, Vol. B(2T14), pp. 417-418, 2006.
[18] C.C. Hsu, J.L. Wang, S.M. Hou, C.K. Chao and J. Lin, “Pushout strength of tibial locking screws: development of finite element models”, Journal of the Chinese Institute of Engineers, Vol. 26, No. 6, pp. 817-823, 2003.
[19] Q.H. Zhang, S.H. Tan and S.M. Chou, “Effects of bone materials on the screw pull-out strength in human spine”, Medical Engineering & Physics, Vol. 28, No. 8, pp. 795-801, 2006.
[20] Q.H. Zhang, S.H. Tan and S.M. Chou, “Investigation of fixation screw pull-out strength on human spine”, Journal of Biomechanics, Vol. 37, No. 4, pp. 479-485, 2004.
[21] E. Oberg, F.D. Jones, H.L. Horton and H.H. Ryffel, “Working strength of bolts. In: Machinery’s Handbook, 23rd edition by Green RE”, New York, Industrial Press Inc, pp. 1278-1279, 1988.
[22] J.R. Chapman, R.M. Harrington, K.M. Lee, P.A. Anderson, A.F. Tencer and D. Kowalski, “Factors affecting the pullout strength of cancellous bone screws”, Journal of Biomechanical Engineering, Vol. 118, pp. 391-398, 1996.
[23] P.S.D. Patel, D.E.T. Shepherd, and D.W.L. Hukins, “The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models”, Medical Engineering & Physics, Vol. 32, pp. 822-828, 2010.
[24] W.C. Tsai, P.Q Chen, T.W. Lu, S.S. Wu, K.S. Shih and S.C. Lin, “Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone”, BMC Musculoskeletal Disorders, Vol. 10, pp. 1-9, 2009.
[25] K. Ozeki, Y. Okuyama, Y. Fukui and H. Aoki, “Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible”, Biomedical Materials and Engineering, Vol.16, pp. 243-251, 2006.
[26] J. Duyck, H.J. Rųnold, H. Van Oosterwyck, I. Naert, J. Vander Sloten and J.E. Ellingsen, “The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study”, Clinical Oral Implants Research, Vol. 12, pp. 207-218, 2001.
[27] K. Akca and M.C. Cehreli, “Biomechanical consequences of progressive marginal bone loss around oral implants: a finite element stress analysis”, Medical & Biological Engineering & Computing, Vol. 44, pp. 527-535, 2006.
[28] T. Toyoshima, W. Wagner, M.O. Klein, E. Stender, M. Wieland and B. Al-Nawas, “Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model”, Clinical Implant Dentistry and Related Research, Vol. 13, No. 1, pp. 71-78, 2011.
[29] I. Turkyilmaz, U. Aksoy and E.A. McGlumphy, “Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data”, Clinical Implant Dentistry and Related Research, Vol. 10, No. 4, pp. 231-237, 2008.
[30] M. Atsumi, S.H. Park and H.L. Wang, “Methods used to assess implant stability: current status”, The International Journal of Oral & Maxillofacial Implants, Vol. 22, No. 5, pp. 743-754, 2007.
[31] S.A. Lim, J.Y. Cha and C.J. Hwang, “Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length”, Angle Orthod, Vol. 78, No. 2, pp. 234-240, 2008.
[32] N. Meredith, “Assessment of implant stability as a prognostic determinant”, The International Journal of Prosthodontics, Vol. 11, No. 5, pp. 491-501, 1998.
[33] D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom and D. Buser, “Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible”, Journal of Biomedical Materials Research, Vol. 40, No. 1, pp. 1-11, 1998.
[34] J.B. Brunski, “Biomechanical factors affecting the bone-dental implant interface”, Clinical Materials, Vol. 10, No. 3, pp. 153-201, 1992.
[35] I. Turkyilmaz, L. Sennerby, E.A. McGlumphy and T.F. Tozum, “Biomechanical aspects of primary implant stability: a human cadaver study”, Clinical Implant Dentistry and Related Research, Vol. 11, No. 2, pp. 113-119, 2009.
[36] M.P. Quesada-Garcia, E. Prados-Sanchez, M.V. Olmedo-Gaya, E. Munoz-Soto, M.P. Gonzalez-Rodriguez and M. Vallecillo-Capilla, “Measurement of dental implant stability by resonance frequency analysis: a review of the literature”, Medicina Oral Patologia Oral y Cirugia Bucal, Vol. 14, No. 10, pp. e538-e546, 2009.
[37] L. Vidyasagar, G. Salms, P. Apse and U. Teibe, “Investigation of initial implant stability with different dental implant designs. A pilot study in pig ribs using resonance frequency analysis”, Stomatologija, Baltic Dental and Maxillofacial Journal, Vol. 6, No. 2, pp. 35-39, 2004.
[38] M. Degidi, G. Daprile, A. Piattelli and F. Carinci, “Evaluation of factors influencing resonance frequency analysis values, at insetion surgery, of implants placed in sinus-augmented and nongrafted sites”, Clinical Implant Dentistry and Related Research, Vol. 9, No. 3, pp. 144-149, 2007.
[39] P.W. Hitchon, M.D. Brenton, J.K. Coppes, A.M. From and J.C. Torner, “Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws”, Spine, Vol. 28, No. 1, pp. 9-13, 2003.
[40] T.C. Ryken, J.D. Clausen, V.C. Traynelis and V.K. Goel, “Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws”, Journal of Neurosurgery, Vol. 83, No. 2, pp. 325-329, 1995.
[41] A.G. Hadjipavlou, C.L. Nicodemus, F.A. Al-Hamdan, J.W. Simmons and M.H. Pope, “Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct”, Journal of Spinal Disorders, Vol. 10, No. 1, pp. 12-19, 1997.
[42] T.L. Halvorson, L.A. Kelley, K.A. Thomas, T.S. 3rd Whitecloud and S.D. Cook, “Effects of bone mineral density on pedicle screw fixation”, Spine, Vol. 19, No. 21, pp. 2415-2420, 1994.
[43] F.W. Baumgart, J. Cordey, K. Morikawa, S.M. Perren, B.A. Rahn, R. Schavan and S. Snyder, “AO/ASIF self-tapping screws (STS)”, Injury, Vol. 24, Suppl. 1, pp. S1-S17, 1993.
[44] M.B. Bickley and D.P. Hanel, “Self-tapping versus standard tapped titanium screw fixation in the upper extremity”, Journal of Hand Surgery [Am], Vol. 23, No. 2, pp. 308-311, 1998.
[45] J.W. Kim, S.H. Baek, T.W. Kim and Y.I. Chang, “Comparison of stability between cylindrical and conical type mini-implants”, The Angle Orthodontist, Vol. 78, No. 4, pp. 692-698, 2008.
[46] R.A. Mischkowski, P. Kneuertz, B. Florvaag, F. Lazar, J. Koebke and J.E. Zoller, “Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandiblo-maxillary area”, International Journal of Oral and Maxillofacial Surgery, Vol. 37, No. 10, pp. 948-954, 2008.
[47] J. Sakoh, U. Wahlmann, E. Stender, R. Nat, B. Al-Nawas and W. Wagner, “Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro”, The International Journal of Oral & Maxillofacial Implants, Vol. 21, No. 4, pp. 560-566, 2006.
[48] American Society for Testing Materials, “Standard F1839-08: Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments”, Philadelphia.
[49] D. O’’Sullivan, L. Sennerby and N. Meredith, “Measurements comparing the initial stability of five designs of dental implants: a human cadaver study”, Clinical Implant Dentistry and Related Research, Vol. 2, No. 2, pp. 85-92, 2000.
[50] J.E. Pedroza, Y. Torrealba, A. Elias and W. Psoter, “Comparison of the compressive strength of 3 different implant design systems”, Journal of Oral Implantology, Vol. 33, No. 1, pp. 1-7, 2007.
[51] S. Yerby, C.C. Scott, N.J. Evans, K.L. Messing and D.R. Carter, “Effect of cutting flute design on cortical bone screw insertion torque and pullout strength”, Journal of Orthopaedic Trauma, Vol.15, No. 3, pp. 216-221, 2001.
[52] F.M. Pfeiffer, D.L. Abernathie and D.E. Smith, “A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes”, Spine, Vol. 31, No. 23, pp. E867-870, 2006.
[53] International Organization for Standardization, “Standard 14801: Dentistry - Implants - Dynamic fatigue test for endosseous dental implants”.
[54] American Society for Testing Materials, “Standard F543-07: Standard Specification and Test Methods for Metallic Medical Bone Screw”, Philadelphia.
[55] American Society for Testing Materials, “Standard F1717-04: Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model”, Philadelphia.
[56] American Society for Testing Materials, “Standard F1264-03: Standard Specification and Test Methods for Intramedullary Fixation Devices”, Philadelphia.
[57] F.H. Dar, J.R. Meakin and R.M. Aspden, “Statistical methods in finite element analysis”, Journal of Biomechanics, Vol. 35, No. 9, pp. 1155-1161, 2002.
[58] W.J.A. Dhert, C.C.P.M. Verheyen, L.H. Braak, C.P.A.T Klein, K. de Groot and P.M. Rozing, “A finite element analysis of the push-out test: Influence of test condition”, Journal of Biomedical Materials Research, Vol. 26, No. 1, pp. 119-130, 1992.
[59] C.C. Verheyen, W.J. Dhert, L.H. Braak and K. de Groot, “Push-out test evaluated by finite element analysis”, Transactions of the Society for Biomaterials, Vol. 17, pp. 216, 1991.
[60] C.K. Chao, C.C. Hsu, J.L. Wang and J. Lin, “Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses”, Journal of Spinal Disorders & Techniques, Vol. 21, No. 1, pp.130-138, 2008.
[61] W.C. Tsai, P.Q. Chen, T.W. Lu, S.S. Wu, K.S. Shin and S.C. Lin, “Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone”, BMC Musculoskeletal Disorders, Vol. 10, No. 44, pp. 1-9, 2009.
[62] 取自http://www.sawbones.com/
[63] P.J. Henry, “Tooth loss and implant replacement”, Australian Dental Journal, Vol. 45, pp. 150-172, 2000.
[64] L. Andersson, Z. Emami-Kristiansen and J. Hogstrom, “Single tooth implant treatment in the anterior region of the maxilla for treatment of tooth loss after trauma: a retrospective clinical and interview study”, Dental Traumatology, Vol. 19, Suppl. 3, pp. S126-S131, 2003.
[65] L.L. Gibbard and G. Zarb, “A 5-year prospective study of implant-supported single-tooth replacements”, Journal of the Canadian Dental Association, Vol. 68, pp. 110-116, 2002.
[66] B. Engquist, T. Bergendal, T. Kallus and U. Linden, “A retrospective multicenter evaluation of osseointegrated implants supporting overdentures”, The International Journal of Oral & Maxillofacial Implants, Vol. 3, pp. 129-134, 1998.
[67] G.L. Yang, F.M. He, X.F. Yang, X.X. Wang, S.F and Zhao, “Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model”, Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics, Vol. 2, pp. 1-9, 2008.
[68] L.H. Huang, J.L. Shotwell, H.L. Wang, “Dental implants for orthodontic anchorage”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 127, pp. 713-722, 2005.
[69] L. Le Guehennec, A. Soueidan, P. Layrolle and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration”, Dental Materials, Vol. 23, pp. 844-854, 2007.
[70] C.J. Ivanoff, J. Sennerby, C. Johansson, B. Rangert and U. Lekholm, “Influence of implant diameter on integration of screw implants. An experimental study in rabbits”, International Journal of Oral and Maxillofacial Surgery, Vol. 26, pp. 141-148, 1997.
[71] M. Akkocaoglu, S. Uysal, I. Tekdemir, K. Akca and M.C. Cehreli, “Implant design and intraosseous stability of immediately placed implants: a human cadaver study”, Clinical Oral Implants Research, Vol. 16, pp. 202-209, 2004.
[72] L. Vidyasagar and P. Apse, “Dental implant design and biological effects on bone-implant interface”, Baltic Dental Maxillofacial Journal, Vol. 6, pp. 51-54, 2004.
[73] H.J. Chun, S.Y. Cheong, J.H. Han, et al. “Evaluation of design parameters of osseointegrated dental implants using finite element analysis”, Journal of Oral Rehabilitation, Vol. 29, pp. 565-574, 2002.
[74] C.J. Ivanoff, K. Grondahl, L. Sennerby, C. Bergstrom and U. Lekholm, “Influence of variations in implant diameters: a 3- to 5-years retrospective clinical report”, The International Journal of Oral & Maxillofacial Implants, Vol. 14, pp. 173-180, 1999.
[75] B.B. Abshire, R.F. McLain, A. Valdevit and H.E. Kambic, “Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out”, The Spine Journal, Vol. 1, pp. 408-414, 2001.
[76] B.R. Merk, S.H. Stern, S. Cordes and E.P. Lautenschlager, “A fatigue life analysis of small fragment screws”, Journal of Orthopaedic Trauma, Vol. 15, Suppl. 7, pp. S494-S499, 2001.
[77] S. Hansson and M. Werke, “The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study”, Journal of Biomechanics, Vol. 36, pp. 1247-1258, 2003.
[78] M.M. Gallas, M.T. Abeleira, J.R. Fernandez and M. Burguera, “Three-dimensional numerical simulation of dental implants as orthodontic anchorage”, European Journal of Orthodontics, Vol. 27, pp. 12-16, 2005.
[79] D.C. Holmes and J.T. Loftus, “Influence of bone quality on stress distribution for endosseous implants”, Journal of Oral Implantology, Vol. 23, Suppl. 3, pp. S104-S111, 1997.
[80] J.Y. Rho, R.B. Ashman and C.H. Turner, “Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements”, Journal of Biomechanics, Vol. 26, pp. 111-119, 1993.
[81] J. Yang and H.J. Xiang, “A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone”, Journal of Biomechanics, Vol. 40, pp. 2377-2385, 2007.
|