博碩士論文 943203118 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:93 、訪客IP:3.15.5.186
姓名 李家慶(Chia-Ching Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 人工牙根與骨骼介面之生物力學研究
(Biomechanical Study of Implant and Bone Interface)
相關論文
★ 人工髖關節雙軸向動態磨耗試驗平台開發★ 大型犬人工髖關節之應力分析
★ 腰椎人工椎間盤之運動軌跡分析★ 骨釘骨板鎖固機構之冷焊現象
★ 熱交換器之熱換管及端板擴管殘留應力分析★ 耦合有限元素法與邊界積分式於三維彈性力學的應用
★ 邊界積分式於剛體聲場散射問題的應用★ 新型輪椅座墊之設計與有限元分析
★ 耦合有限元素法與邊界積分式於隔音牆效能之分析★ 有限元素法與邊界積分式於流固互制問題的應用
★ 人體耳道之有限元素與邊界元素分析★ 奇異項重建法在二維聲場邊界元素分析之應用
★ 波源疊加法在二維聲場之分析★ 三維心電圖與病症自動判別系統之研究
★ 無網格數值分析法應用於股骨頭之生物力學★ 不同離子撞擊冰體及其混合體之光譜分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 人工植牙已成為目前治療牙齒缺損的主要方式,影響植牙成功因素包括牙根設計、表面處理、骨骼狀況及手術技術等,其中牙根外型設計為臨床重要關鍵因素。透過良好外型設計利於初始鎖入、降低鎖入扭矩、減少熱傷害、提高穩定度、減低牙根邊緣骨吸收情形及強化牙根機械強度等,因此重視牙根外型設計將提高手術成功率。本文主要探討牙根外型(如牙型、錐度與自攻缺口)與骨骼之生物力學行為,且藉由牙根鎖入骨骼之扭矩、牙根與骨骼介面穩定度及牙根對骨骼應力分佈研究進行評估。本研究方法涵蓋生物力學測試、有限元素分析及數學模型分析。實驗結果將作為數值方法之基礎資訊,並探討現有數值方法。在鎖入扭矩研究結果發現自攻缺口有助於降低鎖入扭矩與初始鎖入,且錐狀牙根鎖入扭矩較高及具較佳的穩定度,並發現錐狀牙根頸部周圍骨質變較為緊密,另外錐狀碗狀缺口牙根為最佳設計,具備最高的穩定度。植體與骨骼介面穩定度在有限元素分析研究發現位移量的假設在最終抗拉區域較佳,並指出最大應力指標與穩定度相關性最低,反觀,在最終區域的反作用力為較佳指標。另外針對數學模型研究發現桶狀植體有較佳的預估趨勢,但在錐狀植體及牙型需再進行公式化修改。針對牙根對骨骼應力分佈研究結果發現骨骼最大應力均在第一道螺紋處,且方形牙(p = 0.60 mm)擁有最高的接觸面積及較低應力。
摘要(英) Dental Implants have become one of the main treatment modalities for missing teeth. The successful factors include the implant design, the surface treatment, the bone quality, the surgical technique, and so on. Among these factors, the implant design is the dominant clinical factor. It’s easier to do initial insertion, decrease the torque of initial insertion, reduce the thermal injury, increase the stability, reduce the resorption of tooth root, and enhance mechanical strength through a good implant design. Therefore, putting great emphasis on implant design will elevate the successful rate of surgery. This thesis mainly studies the implant-bone mechanical behavior, including the insertion torque, the implant-bone interfaces stability, and stress distribution of marginal bone. The research methods include biomechanical test, finite element analysis, and mathematic model analysis. The experimental results will be the basic information of the numerical methods and compare with the standing numerical methods. In the insertion torque study, flute shape plays a significant role in decreasing the torque of initial insertion and being good for initial insertion. The conical implant has the tighter bony contact at the tail thread. In addition, the conical implant with bowl flutes is the optimal design with the highest stability. In the implant-stability analysis study, the assumed displacement should be within the final pullout regions. In addition, the stress index is the last correlated to the holding power. On the other hand, the reaction force within the final regions is better to be highly correlative with the holding power of the implant than the stress index. For the mathematic model study, the calculated values are quite well to correlate with the difference trend of pullout strength, especially for the cylindrical implants. The thread shape and profile should be formulated by modifying the slippage mechanism at the implant-bone interfaces and simulating the strength change in the squeezed bones. For the stress distribution of marginal bone study, the greatest stress in the surrounding bone was consistently concentrated at the root radii of the first thread. Compare with the other threads, the square thread with a 0.60-mm pitch possessed the optimal contact area and stress values.
關鍵字(中) ★ 人工牙根
★ 牙型
★ 錐度
★ 自攻缺口
★ 鎖入扭矩
★ 有限元素分析
★ 穩定度
關鍵字(英) ★ thread profile
★ thread shape
★ dental implant
★ insertion torque
★ flute
★ finite-element analysis
★ stability
論文目次 中文摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 xi
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 5
1-2-1 人工牙根基本介紹 5
1-2-2 人工牙根失效模式 13
1-2-3 初期穩定度的研究 17
1-2-4 牙根與骨介面問題 22
1-3 研究目的 27
1-4 論文架構 28
第二章 植體設計對鎖入扭矩研究 29
2-1 前言與目的 29
2-2 材料與方法 31
2-2-1 牙根模型 31
2-2-2 骨骼模型 33
2-2-3 硬體設備與實驗規劃 36
2-3 測試結果 39
2-3-1 旋轉測試 39
2-3-2 壓縮測試 43
2-3-3 側向測試 45
2-4 討論 46
2-5 結論 52
第三章 植體與骨骼介面穩定度數值分析研究 53
3-1 前言與目的 53
3-2 材料與方法 56
3-2-1 螺絲模型設計 56
3-2-2 生物力學測試 59
3-2-3 有限元素分析 61
3-3 結果 65
3-3-1 實驗測試結果 65
3-3-2 數值分析結果 70
3-4 討論 73
3-5 結論 76
第四章 植體與骨骼介面穩定度理論預估研究 77
4-1 前言與目的 77
4-2 材料與方法 79
4-2-1 螺絲模型設計 79
4-2-2 生物力學測試 81
4-2-3 數學理論公式 81
4-3 結果 84
4-4 討論 87
4-5 結論 90
第五章 植體與骨骼介面的應力行為 91
5-1 前言與目的 91
5-2 材料與方法 93
5-2-1 牙根與骨骼模型 93
5-2-2 有限元素分析 96
5-2-3 比較指標 98
5-3 分析結果 99
5-3-1 接觸面積 99
5-3-2 骨骼應力 102
5-4 討論 105
5-4-1 接觸面積 106
5-4-2 骨骼應力 109
5-5 結論 111
第六章 結論與未來展望 112
6-1 總結 112
6-2 未來展望 114
個人簡歷 115
參考文獻 116
參考文獻 [1] K. Hebel, R. Gajjar and T. Hofstede, “Single-tooth replacement: bridge vs. implant-supported restoration”, Journal of the Canadian Dental Association, Vol. 66, pp. 435-438, 2000.
[2] A.N. Cranin, “Oral Implantology”, Springfield, I11. Thomas, 1970.
[3] M. Kibrick, Z.A. Munir, H. Lash and S.S. Fox, “The development of a material system for an endosteal tooth implant”, Journal of Oral Implantology, Vol. 6, pp. 172-192, 1975.
[4] L.B. Shulman and T.D. Driskell, “Dental implant: A historical perspective. In: Block MS, Kent JN, Guerra LR (eds)”, Implant in dentistry, Philadelphia: W.B. Saunders co., pp.4-7, 1997.
[5] T.D. Taylor, “What is a dental implant? In: Peppers LG. (eds). Dental implant: Are they for me ?”, Iowa: Quintessence, pp.6-7, 1990.
[6] 林自勇、鄧志娟、陳瑩玲等譯,解剖生理學Essentials of Anatomy & Physiology,全威圖書,民國90年。
[7] 鄭敏雄,口腔應用解剖學,藝軒圖書出版社,民國90年。
[8] O. Kayabasi, E. Yuzbasioglu and F. Erzincanli, “Static, dynamic and fatigue behaviors of dental implant using finite element method”, Advances in Engineering Software, Vol. 37, pp.649-658, 2006.
[9] T.J. Balshi, “An Analysis and Management of Fractured Implants: A Clinical Report”, International Journal of Oral & Maxillofacial Implants, Vol. 11, pp660-666, 1996.
[10] M.D. Santos, A.B. Pfeifer, M.R. Silva, C.L. Sendyk and W.R. Sendyk, “Fracture of abutment screw supporting a cemented implant-retained prosthesis with external hexagon connection: a case report with sem evaluation”, Journal of Applied Oral Science, Vol. 15, pp. 148-151, 2007.
[11] L.T. Kirco and C.E. Misch, “Dental implant prosthetics”, Elsevier Mosby, 2005.
[12] A.R. Eriksson, T. Albrektsson and B. Albrektsson, “Heat caused by drilling cortical bone. Temperature measured in vivo in patients and animals”, Acta Orthopaedica Scandinavica, Vol. 55, pp. 629-631, 1984.
[13] M.T. Hillery and I. Shuaib, “Temperature effects in the drilling of human and bovine bone”, Journal of Materials Processing Technology, Vol. 92, pp. 302-308, 1999.
[14] C.K. Chao and C.C. Hsiao, “Parametric study on bone screw designs for holing power”, Journal of Mechanics, Vol. 22, No. 1, pp. 13-18, 2006.
[15] C.C. Hsu, C.K. Chao, J.L. Wang, S.M. Hou, Y.T. Tsai and J. Lin, “Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses”, Journal of Orthopaedic Research, Vol. 23, No. 4, pp. 788-794, 2005.
[16] S.M. Hou, C.C. Hsu, J.L. Wang, C.K. Chao and J. Lin, “Mechanical tests and finite element models for bone holding power of tibial locking screws”, Clinical Biomechanics, Vol. 19, No. 7, pp. 738-745, 2004.
[17] P. Chazistergons, G. Ferentinos, E.A. Magnissalis and S.K. Kourkoulis, “The pullout-out strength of transpedicular screws in posterior spinal fusion”, Fracture of Nano and Engineering Materials and Structures, Vol. B(2T14), pp. 417-418, 2006.
[18] C.C. Hsu, J.L. Wang, S.M. Hou, C.K. Chao and J. Lin, “Pushout strength of tibial locking screws: development of finite element models”, Journal of the Chinese Institute of Engineers, Vol. 26, No. 6, pp. 817-823, 2003.
[19] Q.H. Zhang, S.H. Tan and S.M. Chou, “Effects of bone materials on the screw pull-out strength in human spine”, Medical Engineering & Physics, Vol. 28, No. 8, pp. 795-801, 2006.
[20] Q.H. Zhang, S.H. Tan and S.M. Chou, “Investigation of fixation screw pull-out strength on human spine”, Journal of Biomechanics, Vol. 37, No. 4, pp. 479-485, 2004.
[21] E. Oberg, F.D. Jones, H.L. Horton and H.H. Ryffel, “Working strength of bolts. In: Machinery’s Handbook, 23rd edition by Green RE”, New York, Industrial Press Inc, pp. 1278-1279, 1988.
[22] J.R. Chapman, R.M. Harrington, K.M. Lee, P.A. Anderson, A.F. Tencer and D. Kowalski, “Factors affecting the pullout strength of cancellous bone screws”, Journal of Biomechanical Engineering, Vol. 118, pp. 391-398, 1996.
[23] P.S.D. Patel, D.E.T. Shepherd, and D.W.L. Hukins, “The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models”, Medical Engineering & Physics, Vol. 32, pp. 822-828, 2010.
[24] W.C. Tsai, P.Q Chen, T.W. Lu, S.S. Wu, K.S. Shih and S.C. Lin, “Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone”, BMC Musculoskeletal Disorders, Vol. 10, pp. 1-9, 2009.
[25] K. Ozeki, Y. Okuyama, Y. Fukui and H. Aoki, “Bone response to titanium implants coated with thin sputtered HA film subject to hydrothermal treatment and implanted in the canine mandible”, Biomedical Materials and Engineering, Vol.16, pp. 243-251, 2006.
[26] J. Duyck, H.J. Rųnold, H. Van Oosterwyck, I. Naert, J. Vander Sloten and J.E. Ellingsen, “The influence of static and dynamic loading on marginal bone reactions around osseointegrated implants: an animal experimental study”, Clinical Oral Implants Research, Vol. 12, pp. 207-218, 2001.
[27] K. Akca and M.C. Cehreli, “Biomechanical consequences of progressive marginal bone loss around oral implants: a finite element stress analysis”, Medical & Biological Engineering & Computing, Vol. 44, pp. 527-535, 2006.
[28] T. Toyoshima, W. Wagner, M.O. Klein, E. Stender, M. Wieland and B. Al-Nawas, “Primary stability of a hybrid self-tapping implant compared to a cylindrical non-self-tapping implant with respect to drilling protocols in an ex vivo model”, Clinical Implant Dentistry and Related Research, Vol. 13, No. 1, pp. 71-78, 2011.
[29] I. Turkyilmaz, U. Aksoy and E.A. McGlumphy, “Two alternative surgical techniques for enhancing primary implant stability in the posterior maxilla: a clinical study including bone density, insertion torque, and resonance frequency analysis data”, Clinical Implant Dentistry and Related Research, Vol. 10, No. 4, pp. 231-237, 2008.
[30] M. Atsumi, S.H. Park and H.L. Wang, “Methods used to assess implant stability: current status”, The International Journal of Oral & Maxillofacial Implants, Vol. 22, No. 5, pp. 743-754, 2007.
[31] S.A. Lim, J.Y. Cha and C.J. Hwang, “Insertion torque of orthodontic miniscrews according to changes in shape, diameter and length”, Angle Orthod, Vol. 78, No. 2, pp. 234-240, 2008.
[32] N. Meredith, “Assessment of implant stability as a prognostic determinant”, The International Journal of Prosthodontics, Vol. 11, No. 5, pp. 491-501, 1998.
[33] D.L. Cochran, R.K. Schenk, A. Lussi, F.L. Higginbottom and D. Buser, “Bone response to unloaded and loaded titanium implants with a sandblasted and acid-etched surface: A histometric study in the canine mandible”, Journal of Biomedical Materials Research, Vol. 40, No. 1, pp. 1-11, 1998.
[34] J.B. Brunski, “Biomechanical factors affecting the bone-dental implant interface”, Clinical Materials, Vol. 10, No. 3, pp. 153-201, 1992.
[35] I. Turkyilmaz, L. Sennerby, E.A. McGlumphy and T.F. Tozum, “Biomechanical aspects of primary implant stability: a human cadaver study”, Clinical Implant Dentistry and Related Research, Vol. 11, No. 2, pp. 113-119, 2009.
[36] M.P. Quesada-Garcia, E. Prados-Sanchez, M.V. Olmedo-Gaya, E. Munoz-Soto, M.P. Gonzalez-Rodriguez and M. Vallecillo-Capilla, “Measurement of dental implant stability by resonance frequency analysis: a review of the literature”, Medicina Oral Patologia Oral y Cirugia Bucal, Vol. 14, No. 10, pp. e538-e546, 2009.
[37] L. Vidyasagar, G. Salms, P. Apse and U. Teibe, “Investigation of initial implant stability with different dental implant designs. A pilot study in pig ribs using resonance frequency analysis”, Stomatologija, Baltic Dental and Maxillofacial Journal, Vol. 6, No. 2, pp. 35-39, 2004.
[38] M. Degidi, G. Daprile, A. Piattelli and F. Carinci, “Evaluation of factors influencing resonance frequency analysis values, at insetion surgery, of implants placed in sinus-augmented and nongrafted sites”, Clinical Implant Dentistry and Related Research, Vol. 9, No. 3, pp. 144-149, 2007.
[39] P.W. Hitchon, M.D. Brenton, J.K. Coppes, A.M. From and J.C. Torner, “Factors affecting the pullout strength of self-drilling and self-tapping anterior cervical screws”, Spine, Vol. 28, No. 1, pp. 9-13, 2003.
[40] T.C. Ryken, J.D. Clausen, V.C. Traynelis and V.K. Goel, “Biomechanical analysis of bone mineral density, insertion technique, screw torque, and holding strength of anterior cervical plate screws”, Journal of Neurosurgery, Vol. 83, No. 2, pp. 325-329, 1995.
[41] A.G. Hadjipavlou, C.L. Nicodemus, F.A. Al-Hamdan, J.W. Simmons and M.H. Pope, “Correlation of bone equivalent mineral density to pull-out resistance of triangulated pedicle screw construct”, Journal of Spinal Disorders, Vol. 10, No. 1, pp. 12-19, 1997.
[42] T.L. Halvorson, L.A. Kelley, K.A. Thomas, T.S. 3rd Whitecloud and S.D. Cook, “Effects of bone mineral density on pedicle screw fixation”, Spine, Vol. 19, No. 21, pp. 2415-2420, 1994.
[43] F.W. Baumgart, J. Cordey, K. Morikawa, S.M. Perren, B.A. Rahn, R. Schavan and S. Snyder, “AO/ASIF self-tapping screws (STS)”, Injury, Vol. 24, Suppl. 1, pp. S1-S17, 1993.
[44] M.B. Bickley and D.P. Hanel, “Self-tapping versus standard tapped titanium screw fixation in the upper extremity”, Journal of Hand Surgery [Am], Vol. 23, No. 2, pp. 308-311, 1998.
[45] J.W. Kim, S.H. Baek, T.W. Kim and Y.I. Chang, “Comparison of stability between cylindrical and conical type mini-implants”, The Angle Orthodontist, Vol. 78, No. 4, pp. 692-698, 2008.
[46] R.A. Mischkowski, P. Kneuertz, B. Florvaag, F. Lazar, J. Koebke and J.E. Zoller, “Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandiblo-maxillary area”, International Journal of Oral and Maxillofacial Surgery, Vol. 37, No. 10, pp. 948-954, 2008.
[47] J. Sakoh, U. Wahlmann, E. Stender, R. Nat, B. Al-Nawas and W. Wagner, “Primary stability of a conical implant and a hybrid, cylindric screw-type implant in vitro”, The International Journal of Oral & Maxillofacial Implants, Vol. 21, No. 4, pp. 560-566, 2006.
[48] American Society for Testing Materials, “Standard F1839-08: Standard Specification for Rigid Polyurethane Foam for Use as a Standard Material for Testing Orthopaedic Devices and Instruments”, Philadelphia.
[49] D. O’’Sullivan, L. Sennerby and N. Meredith, “Measurements comparing the initial stability of five designs of dental implants: a human cadaver study”, Clinical Implant Dentistry and Related Research, Vol. 2, No. 2, pp. 85-92, 2000.
[50] J.E. Pedroza, Y. Torrealba, A. Elias and W. Psoter, “Comparison of the compressive strength of 3 different implant design systems”, Journal of Oral Implantology, Vol. 33, No. 1, pp. 1-7, 2007.
[51] S. Yerby, C.C. Scott, N.J. Evans, K.L. Messing and D.R. Carter, “Effect of cutting flute design on cortical bone screw insertion torque and pullout strength”, Journal of Orthopaedic Trauma, Vol.15, No. 3, pp. 216-221, 2001.
[52] F.M. Pfeiffer, D.L. Abernathie and D.E. Smith, “A comparison of pullout strength for pedicle screws of different designs: a study using tapped and untapped pilot holes”, Spine, Vol. 31, No. 23, pp. E867-870, 2006.
[53] International Organization for Standardization, “Standard 14801: Dentistry - Implants - Dynamic fatigue test for endosseous dental implants”.
[54] American Society for Testing Materials, “Standard F543-07: Standard Specification and Test Methods for Metallic Medical Bone Screw”, Philadelphia.
[55] American Society for Testing Materials, “Standard F1717-04: Standard Test Methods for Spinal Implant Constructs in a Vertebrectomy Model”, Philadelphia.
[56] American Society for Testing Materials, “Standard F1264-03: Standard Specification and Test Methods for Intramedullary Fixation Devices”, Philadelphia.
[57] F.H. Dar, J.R. Meakin and R.M. Aspden, “Statistical methods in finite element analysis”, Journal of Biomechanics, Vol. 35, No. 9, pp. 1155-1161, 2002.
[58] W.J.A. Dhert, C.C.P.M. Verheyen, L.H. Braak, C.P.A.T Klein, K. de Groot and P.M. Rozing, “A finite element analysis of the push-out test: Influence of test condition”, Journal of Biomedical Materials Research, Vol. 26, No. 1, pp. 119-130, 1992.
[59] C.C. Verheyen, W.J. Dhert, L.H. Braak and K. de Groot, “Push-out test evaluated by finite element analysis”, Transactions of the Society for Biomaterials, Vol. 17, pp. 216, 1991.
[60] C.K. Chao, C.C. Hsu, J.L. Wang and J. Lin, “Increasing bending strength and pullout strength in conical pedicle screws: biomechanical tests and finite element analyses”, Journal of Spinal Disorders & Techniques, Vol. 21, No. 1, pp.130-138, 2008.
[61] W.C. Tsai, P.Q. Chen, T.W. Lu, S.S. Wu, K.S. Shin and S.C. Lin, “Comparison and prediction of pullout strength of conical and cylindrical pedicle screws within synthetic bone”, BMC Musculoskeletal Disorders, Vol. 10, No. 44, pp. 1-9, 2009.
[62] 取自http://www.sawbones.com/
[63] P.J. Henry, “Tooth loss and implant replacement”, Australian Dental Journal, Vol. 45, pp. 150-172, 2000.
[64] L. Andersson, Z. Emami-Kristiansen and J. Hogstrom, “Single tooth implant treatment in the anterior region of the maxilla for treatment of tooth loss after trauma: a retrospective clinical and interview study”, Dental Traumatology, Vol. 19, Suppl. 3, pp. S126-S131, 2003.
[65] L.L. Gibbard and G. Zarb, “A 5-year prospective study of implant-supported single-tooth replacements”, Journal of the Canadian Dental Association, Vol. 68, pp. 110-116, 2002.
[66] B. Engquist, T. Bergendal, T. Kallus and U. Linden, “A retrospective multicenter evaluation of osseointegrated implants supporting overdentures”, The International Journal of Oral & Maxillofacial Implants, Vol. 3, pp. 129-134, 1998.
[67] G.L. Yang, F.M. He, X.F. Yang, X.X. Wang, S.F and Zhao, “Bone responses to titanium implants surface-roughened by sandblasted and double etched treatments in a rabbit model”, Oral Surgery Oral Medicine Oral Pathology Oral Radiology & Endodontics, Vol. 2, pp. 1-9, 2008.
[68] L.H. Huang, J.L. Shotwell, H.L. Wang, “Dental implants for orthodontic anchorage”, American Journal of Orthodontics and Dentofacial Orthopedics, Vol. 127, pp. 713-722, 2005.
[69] L. Le Guehennec, A. Soueidan, P. Layrolle and Y. Amouriq, “Surface treatments of titanium dental implants for rapid osseointegration”, Dental Materials, Vol. 23, pp. 844-854, 2007.
[70] C.J. Ivanoff, J. Sennerby, C. Johansson, B. Rangert and U. Lekholm, “Influence of implant diameter on integration of screw implants. An experimental study in rabbits”, International Journal of Oral and Maxillofacial Surgery, Vol. 26, pp. 141-148, 1997.
[71] M. Akkocaoglu, S. Uysal, I. Tekdemir, K. Akca and M.C. Cehreli, “Implant design and intraosseous stability of immediately placed implants: a human cadaver study”, Clinical Oral Implants Research, Vol. 16, pp. 202-209, 2004.
[72] L. Vidyasagar and P. Apse, “Dental implant design and biological effects on bone-implant interface”, Baltic Dental Maxillofacial Journal, Vol. 6, pp. 51-54, 2004.
[73] H.J. Chun, S.Y. Cheong, J.H. Han, et al. “Evaluation of design parameters of osseointegrated dental implants using finite element analysis”, Journal of Oral Rehabilitation, Vol. 29, pp. 565-574, 2002.
[74] C.J. Ivanoff, K. Grondahl, L. Sennerby, C. Bergstrom and U. Lekholm, “Influence of variations in implant diameters: a 3- to 5-years retrospective clinical report”, The International Journal of Oral & Maxillofacial Implants, Vol. 14, pp. 173-180, 1999.
[75] B.B. Abshire, R.F. McLain, A. Valdevit and H.E. Kambic, “Characteristics of pullout failure in conical and cylindrical pedicle screws after full insertion and back-out”, The Spine Journal, Vol. 1, pp. 408-414, 2001.
[76] B.R. Merk, S.H. Stern, S. Cordes and E.P. Lautenschlager, “A fatigue life analysis of small fragment screws”, Journal of Orthopaedic Trauma, Vol. 15, Suppl. 7, pp. S494-S499, 2001.
[77] S. Hansson and M. Werke, “The implant thread as a retention element in cortical bone: the effect of thread size and thread profile: a finite element study”, Journal of Biomechanics, Vol. 36, pp. 1247-1258, 2003.
[78] M.M. Gallas, M.T. Abeleira, J.R. Fernandez and M. Burguera, “Three-dimensional numerical simulation of dental implants as orthodontic anchorage”, European Journal of Orthodontics, Vol. 27, pp. 12-16, 2005.
[79] D.C. Holmes and J.T. Loftus, “Influence of bone quality on stress distribution for endosseous implants”, Journal of Oral Implantology, Vol. 23, Suppl. 3, pp. S104-S111, 1997.
[80] J.Y. Rho, R.B. Ashman and C.H. Turner, “Young’s modulus of trabecular and cortical bone material: ultrasonic and microtensile measurements”, Journal of Biomechanics, Vol. 26, pp. 111-119, 1993.
[81] J. Yang and H.J. Xiang, “A three-dimensional finite element study on the biomechanical behavior of an FGBM dental implant in surrounding bone”, Journal of Biomechanics, Vol. 40, pp. 2377-2385, 2007.
指導教授 鄔蜀威(Shu-Wei Wu) 審核日期 2012-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明