博碩士論文 996203019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:13 、訪客IP:3.14.254.54
姓名 鄒佳諭(Chia-Yu Tzou)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 藉由卡西尼太空船MIMI/LEMMS觀測資料分析土星高能電漿入射來源之統計
(A Statistical Study of the Source Regions of the Saturnian Injection Events from Cassini MIMI/LEMMS Measurements)
相關論文
★ 日冕拋射物質現象在太陽第23週期之統計研究★ 土星環粒子隨時間變化之表面溫度模擬
★ RHESSI觀測M型太陽閃焰的動態結構分析★ 太陽活動寧靜期日冕層影像與解析磁場模型之影像套疊與應用
★ 土衛八Iapetus的外球層模型★ 月球表面反射太陽風質子之粒子模擬
★ 土衛六-泰坦的大氣層密度和溫度的三維分佈★ 日冕物質拋射速度與緯度和太陽活動週期的關係
★ 隨季節變化之灶神星冰極模擬★ 土星環鄰近地區之帶電塵埃粒子動力學
★ 直接模擬蒙地卡羅法於彗星之噴氣和塵埃噴流之應用★ 克普勒任務觀測G型星超級閃焰的資料分析
★ The Measurements of the Gas Density Distributions and Composition in the Water Plumes of Enceladus by the INMS Instrument on Cassini★ 木星環系統帶電粒子動力學分析與 全球碰撞分布地圖--為JUNO任務預測
★ 土衛六泰坦大氣的甲烷在土星系統的分佈★ 冥王星與其它矮行星的大氣季節性演化
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 卡西尼(Cassini)太空船上的太空電漿量測儀器(MIMI/LEMMS)在土星磁層中觀測到頻繁的高能電子及離子入射,這是土星磁層的一大特色。這樣的電漿入射事件可以由被稱為交換不穩定(interchange instability)的機制所引發。而交換不穩定可以歸因於主要源自土星冰衛星之一土衛二(Enceladus)的電漿在土星磁層中之質量負載。
接續Mauk (2005)、Paranicas (2007)及Muller (2010)等人的研究,我們設法得到2010年觀測資料中電漿入射事件的入射方位及觀測年齡。本研究中我們總共分析了25個年輕的電漿入射事件。卡西尼太空船在2010年的軌道傾角不大,換句話說,這段期間內卡西尼太空船在接近赤道平面上繞行。卡西尼太空船2010年繞行的範圍皆在土星磁層的同一區域,導致分析年輕入射事件得到的入射方位多數被限制在土星傍晚區域。在此,我們也發現一些似乎為土星磁層中一連串電漿入射爆發的“電漿入射群”。
摘要(英) One of the special features of the Saturnian magnetosphere is the frequent injection of energetic ions and electrons observed by the plasma instruments onboard the Cassini spacecraft (i.e., MIMI./LEMMS). Such injection events could be triggered by the so-called interchange instability due to the mass-loading effect of the ions originated from the icy satellite, Enceladus.
Following the work of Mauk et al. (2005), Paranicas et al. (2007) and Muller et al. (2010), we try to extract the injection site and age of injection signatures for the period during year 2010. Here we choose to analyze young events only. There are 22 inbound injection events and 3 outbound events studied. In 2010 the inclination of Cassini is small and the spacecraft orbits are close to the equatorial plane. Because the orbits of the Cassini spacecraft moved through the same region of the Saturnian magnetosphere in 2010, the extracted injection sites of the selected young events are limited to be mostly in the dusk region. And we found there are some “injection-clusters” that appear to be injection bursts in Saturn’s magnetosphere.
關鍵字(中) ★ 電漿入射
★ 磁層
★ 卡西尼
★ 土星
關鍵字(英) ★ injection events
★ MIMI/LEMMS
★ Cassini
★ magnetosphere
★ Saturn
論文目次 Abstract ii
Acknowledgement iii
List of Figures v
List of Tables xix
Chapter 1 Introduction 1
1.1 What is Saturn’s Magnetosphere Like? 1
1.1.1 Plasma Source 2
1.1.2 Earth, Jupiter and Saturn Comparison 2
1.2 Injection Events 9
1.3 Drift 12
1.4 Partial Corotation 15
Chapter 2 Data Analysis 16
2.1 Instrument 16
2.2 Time-Energy Spectrogram 17
2.3 Model 19
2.4 Injection Age and Injection Site Extraction 25
Chapter 3 Results 39
Chapter 4 Discussion 120
Bibliography 122
參考文獻 Badman, S. V. and S. W. H. Cowley, J.-C. Gerard, and D. Grodent, 2006. A statistical analysis of the location and width of Saturn’s southern auroras. Ann. Geophys. 24, 3533–3545.
Badman, S. V. and S. W. H. Cowley, 2007. Significance of Dungey-cycle flows in Jupiter’s and Saturn’s magnetospheres, and their identification on closed equatorial field lines. Annales Geophysicae 25, 941– 951.
Brice, Neil M. and George A. Ioannidis, 1970. The Magnetospheres of Jupiter and Earth. Icarus 13, 173-183.
Cowley, S. W. H., E. J. Bunce, and R. Prange, 2004. Saturn’s polar ionospheric flows and their relation to the main auroral oval. Annales Geophys. 22, 1379–1394.
Cowley, S. W. H., E. J. Bunce, and J. M. O’Rourke, 2004. A simple quantitative model of plasma flows and currents in Saturn’s polar ionosphere. J. Geophys. Res. 109, A05212.
Dungey, J.W., 1961. Interplanetary magnetic field and the auroral zones. Phys. Rev. Lett. 6:47.
Goedbloed, J. P. and S. Poedts, 2004, Principles of magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge University Press, pp. 34 - 82.
Gombosi, T. I., Thomas P. Armstrong, Christopher S. Arridge, Krishan K. Khurana, Stamatios M. Krimigis, Norbert Krupp, Ann M. Persoon, and Michelle F. Thomsen, Saturn’s Magnetospheric Configuration, in: M. K. Dougherty, L. W. Esposito, and S. M. Krimigis (Eds.), 2009, Saturn from Cassini-Huygens. Springer, pp. 203 – 255.
Gombosi, Tamas I. and Andrew P. Ingersoll, 2010. Saturn: Atmosphere, Ionosphere, and Magnetosphere. Science 327, 1476
Hamlin, D. A., R. Karplus, R. C. Vik, and K. M. Watson, 1961. Mirror and azimuthal drift frequencies for geomagnetically trapped particles. J. Geophys. Res., 66, 1.

Hill, T.W., M.F. Thomsen, M.G. Henderson, R.L. Tokar, A.J. Coates, H.J. McAndrews, G.R. Lewis, D.G. Mitchell, C.M. Jackman, C.T. Russell, M.K. Dugherty, F.J. Crary, and D.T. Young, 2008. Plasmoids in Saturn’s magnetotail. J. Geophys. Res., 113, A01214.
Hughes, W. J., The Magnetopause, Magnetotail, and Magnetic Reconnection, in: M. G. Kivelson and C. T. Russell (Eds.), 1995, Introduction to Space Physics. Cambridge University Press, pp. 227 – 287.
Kivelson, M. G., Physics of Space Plasmas, in: M. G. Kivelson and C. T. Russell (Eds.), 1995, Introduction to Space Physics. Cambridge University Press, pp. 27 – 57.
Krimigis, S.M., Mitchell, D.G., Hamilton, D.C., Livi, S., Dandouras, J., Jaskulek, S., Armstrong, T.P., Boldt, J.D., Cheng, A.F., Gloeckler, G., Hayes, J.R., Hsieh, K.C., Ip, W.-H., Keath, E.P., Kirsch, E., Krupp, N., Lanzerotti, L.J., Lundgren, R., Mauk, B.H., McEntire, R.W., Roelof, E.C., Schlemm, C.E., Tossman, B.E., Wilken, B., Williams, D.J., 2004. Magnetosphere imaging instrument (MIMI) on the Cassini mission to Saturn/Titan. Space Sci. Rev. 114, 233–329.
Krupp, N., E. Roussos, A. Lagg, J. Woch, A.L. Mueller, S.M. Krimigis, D.G. Mitchell, E.C. Roelof, C. Paranicas, J. Carbary, G.H. Jones, D.C. Hamilton, S. Livi, T.P. Armstrong, M.K. Dougherty, N. Sergis, 2009. Energetic particles in Saturn’s magnetosphere during the Cassini nominal mission (July 2004–July 2008), Planet. Space Sci., 57, 1754–1768.
Lew, J. S.,1961. Drift rate in a dipole field. J. Geophys. Res., 66, 2681.
Mauk, B. H., J. Saur, D. G. Mitchell, E. C. Roelof, P. C. Brandt, T. P. Armstrong, D. C. Hamilton, S. M. Krimigis, N. Krupp, S. A. Livi, J. W. Manweiler, and C. P. Paranicas, 2005. Energetic particle injections in Saturn’s magnetosphere, Geophys. Res. Lett., 32, L14S05.
Mauk, B.H., D.C. Hamilton, T.W. Hill, G.B. Hospodarsky, R.E. Johnson, C. Paranicas, E. Roussos, C.T. Russell, D.E. Shemansky, E.C. Sittler Jr., and R.M. Thorne, Fundamental Plasma Processes in Saturn’s Magnetosphere, in: M. K. Dougherty, L. W. Esposito, and S. M. Krimigis (Eds.), 2009, Saturn from Cassini-Huygens. Springer, pp. 281 – 331.
Mitchell, D.G., J.F. Carbary, S.W.H. Cowley, T.W. Hill, and P. Zarka, The Dynamics of Saturn’s Magnetosphere, in: M. K. Dougherty, L. W. Esposito, and S. M. Krimigis (Eds.), 2009, Saturn from Cassini-Huygens. Springer, pp. 257 - 279.
Muller, A. L., J. Saur, N. Krupp, E. Roussos, B. H. Mauk, A. M. Rymer, D. G. Mitchell, and S. M. Krimigis, 2010. Azimuthal plasma flow in the Kronian magnetosphere. J. Geophys. Res., 115, A08203
Paranicas, C., D. G. Mitchell, E. C. Roelof, B. H. Mauk, S. M. Krimigis, P. C. Brandt, M. Kusterer, F. S. Turner, J. Vandegriff, and N. Krupp, 2007. Energetic electrons injected into Saturn’s neutral gas cloud. Geophys. Res. Lett., 34, L02109.
Paranicas, C., D. G. Mitchell, E. Roussos, P. Kollmann, N. Krupp, A. L. Muller, S. M. Krimigis, F. S. Turner, P. C. Brandt, A. M. Rymer, and R. E. Johnson, 2010. Transport of energetic electrons into Saturn’s inner magnetosphere. J. Geophys. Res., 115, A09214.
Richardson, J. D., 1998, Thermal plasma and neutral gas in Saturn’s magnetosphere. Geophys. Res. Lett. 36, 501–524.
Smith, H. T., M. Shappirio, E. C. Sittler, D. Reisenfeld, R. E. Johnson, R. A. Baragiola, F. J. Crary, D. J. McComas, and D. T. Young, 2005, Discovery of nitrogen in Saturn’s inner magnetosphere, Geophys. Res. Lett. 32, L14S03.
Thomsen, M. F., and J. A. Van Allen, 1980. Motion of trapped electrons and protons in Saturn’s inner magnetosphere. J. Geophys. Res., 85, 5831– 5834.
Waite J. H., M. R. Combi, W.-H. Ip, T. E. Cravens, R. L. McNutt, W. Kasprzak, R. Yelle, J. Luhmann, H. Niemann, D. Gell, B. Magee, G. Fletcher, J. Lunine, and W. L. Tseng, 2006, Cassini ion and neutral mass spectrometer: Enceladus plume composition and structure. Science 311, 1419–1422.
Wilson, R. J., R. L. Tokar, M. G. Henderson, T. W. Hill, M. F. Thomsen, and D. H. Pontius Jr., 2008. Cassini plasma spectrometer thermal ion measurements in Saturn’s
inner magnetosphere. J. Geophys. Res., 113, A12218.
Vasyliunas, V. M., Plasma distribution and flow, in: A. J. Dessler (Ed.), 1983, Physics of the Jovian Magnetosphere. Cambridge University Press, New York, pp. 395–453.
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2012-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明