博碩士論文 966405002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:135 、訪客IP:3.14.247.243
姓名 陳奕穎(Yi-ying Chen)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 應用渦流相關法探討地表水氣通量與熱通量之特徵:以亞熱帶季節性常綠闊葉林為例
(Investigating the Seasonal Variability of Surface Heat and Water Vapor Fluxes with Eddy Covariance Techniques: A Subtropical Evergreen Forest as An Example)
相關論文
★ 以禁忌演算法推估流域空間降雨★ 氣候變遷對台灣地區地表水文量之影響
★ 分散式降雨逕流模式之建立及暴雨時期流量之模擬★ 翡翠水庫集水區水文分析
★ 地表過程蒸發散之觀測與分析★ 桃園地區人工埤池對水資源輔助之分析研究
★ 地表過程質傳與熱傳數值模擬★ 桃園灌區之區域迴歸水分析研究
★ 地表通量觀測與分析★ 氣候變遷對水庫集水區入流量之衝擊評估-以石門水庫集水區為例
★ 應用通量變異法與渦流相關法推估地表通量★ 改良GWLF模式應用於翡翠水庫入流量模擬
★ 淡水河流域水文時空變異分析★ 應用土壤水分變化推估常綠闊葉林蒸發散量
★ 生地化反應數值模式 – BIOGEOCHEM 互動式圖形使用者介面的開發與應用★ 結合季長期天氣預報與水文模式推估石門水庫入流量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地表與大氣之間水、熱通量交換速度的快慢,不但影響著近地表邊界層的發展,亦同時牽動著區域性氣候變化以及流域集水區之水文循環。為了瞭解上述的自然現象,我們常常透過數值模式對未來的環境進行模擬或預測。但是對這些模式而言,邊界條件的給定是相當重要的,例如:水文模式中的蒸發散估算、氣候模式中動量、水氣與熱通量的參數化方式。因此,惟有正確的瞭解這些通量的傳輸機制以及其在時間上的變化特性,這些模式工具才能提供給我們可靠的計算結果,讓我們瞭解地表-大氣的交互作用及其影響。在台灣應用渦流相關法觀測地表通量的技術相較於歐、美、日等國起步較晚,但近期已急起直追。且台灣本島丘陵森林居多且茂密,提供了在複雜地貌下應用渦流相關法的研究空間。本研究試圖瞭解在複雜地貌下以渦流相關法進行地表水、熱通量觀測所面臨的挑戰並提供解決方式,並將通量結果進行參數化,期有助於地表通量觀測與陸面過程之研究。本文根據文獻回顧、研究測站、研究方法、結果討論以及結論進行分段,主要可成六個章節。其中,第三章至第五章分別針對不同研究議題進行撰寫。第一章對渦流相關法的基礎理論與應用層面的文獻進行回顧。第二章則是介紹蓮華池研究樣區所架設之觀測儀器以及該測站的長期氣候狀態。第三章是說明如何在地形複雜的地貌條件下進行渦流相關法,期達到對地表水氣與熱通量進行精準的觀測。第四章則是敘述本研究所發展的一個地表水氣通量資料缺補的統計模式。第五章則發展地表阻抗的參數化模型。第六章是總結本研究之相關發現,並對地表通量觀測未來研究發展提出建議。
彙整各章節的研究結果:於蓮華池測站進行渦流相關法觀測地表通量時會面臨能量不閉合的狀況;然此不閉合的狀態存在著一個明顯的季節性變化特徵,夏天能量閉合低(小於1)且較密集、而冬天較散亂能量閉合度高(大於1)。進一步使用通量源、匯模式對地表通量源、匯位置進行計算與調查。結果指出冬天的通量源位置較分散,且有部分會超出集水區的範圍;夏季通量源位置較集中,多數落於觀測塔附近。推論能量閉合度的高、低是季節性風場所造成與紊流發展強、弱有關。此外,在複雜的地形條件下以渦流相關法進行通量觀測建議採用平面擬合參考座標系統,並配合較長的平均時距,以60或120分鐘較佳,可降低短期能量閉合的不確定性,長期可達到年尺度的能量守恆。經由Ogive法分析水氣與熱通量觀測結果指出,使用較長的平均時距可以有效地觀測到紊流尺度較大的渦漩所動的可感熱通量,尤其是在午後熱對流較旺盛的期間。對於通量資料缺補模式的發展,主要結合主成分分析法與非線性內插方程式進行水氣通量資料缺補的統計模式開發,這個部分的研究結果指出:日間與夜晚應採取不同的內插樣本數,可以獲得較佳的通量資料缺補的結果。而地表參數化的研究,則是採用了Penman- Monteith方程式與實測通量結果繁衍地表阻抗。該研究資料顯示:當地表由濕變乾,地表阻抗與輻射之關聯性增加,地表阻抗與風速之關聯性減低;反之亦然。進一步嘗試將此地表阻抗特性參數化成微氣象因子與土壤水分之函數。該模式搭配標準微氣象觀測資料,可提供小時時間尺度下水氣通量或蒸發散量的推估。即當植被層上的微氣象條件與植被層下的土壤水分狀態同時取得時,地表水氣通量即可以Penman-Monteith方程式進行合理推算。
目前成果多為針對環境條件與地表水氣或熱通量傳輸速率之影響進行探討,植物生生理反應對地表通量傳輸之機制調查仍顯不足。未來應可對碳通量進行觀測,進行植物生理對地表水、熱通量傳輸機制與特徵之探討。
摘要(英) his dissertation focused on using eddy covariance technique to investigate a variety of primary hydrologic, radiative and turbulent transport processes driving forest-atmosphere exchanges of heat and water vapor at a subtropical evergreen forest. A total of six chapters was described in this study. A brief literature review on theoretical and applied eddy covariance techniques was introduced in Chapter1. Climatological condition and experimental setup at Lien-Hua-Chih study site were presented in Chapter 2. Determining the adequate averaging periods and reference coordinates for measuring surface heat and water vapor fluxes over the mountainous terrain was devoted in Chapter 3. In sequent Chapter 4, a gap-filling model, combining principle component analysis and the K-nearest neighbor algorithm, for estimating latent heat gaps was developed. In Chapter 5, a surface resistance parameterizing model for the Penman-Monteith equation suitable for application on hourly time scale was proposed. Finally, some thoughts summarizing my findings and future works were given in Chapter 6.
To summarize, the seasonal energy closure variation at this study site was concluded as the result from having weak turbulence developments during wet seasons and mismatching flux footprint areas among flux sensors during dry seasons. The Ogive function analysis revealed that the energy closure was improved with the increase of averaging time by capturing sensible heat fluxes at low-frequency ranges during certain midday hours. For planar-fit rotation approach, a typical averaging period (30 min) is not suitable and a 60 min or 120 min averaging period is an adequate averaging period for calculating eddy fluxes at this study site. The developed gap-filling approach by incorporating the adaptive interpolation method resolves the eddy covariance data gaps problem on various timescales ranging from hours to years. Using an integrated hydrometeorological flux tower and field experiments, the surface resistance can be reasonably parameterized as a function of radiation forcing and environmental factors if meteorological conditions above canopy and soil moisture contents are well known.
For my future work, this framework can be broadened to investigate the carbon exchange, e.g., CO2 flux, between terrestrial ecosystem and atmosphere for better understanding the effect of biological controls on evapotranspiration.
關鍵字(中) ★ 通量觀測
★ 渦流相關法
★ 資料缺補
★ 能量閉合
★ 地表過程
★ 通量參數化
關鍵字(英) ★ eddy covariance
★ gap-filling
★ energy closure
★ land surface process
★ surface parameterization
★ evapotranspiration
★ Penman-Monteith
論文目次 Table of Contents
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literature Review 2
1.2.1 Theoretical Background of the Eddy Covariance Approach 2
1.2.2Reynolds Averaging and Taylor Hypothesis 3
1.2.3 Mass Conservation (Continuity) Equation 4
1.2.4 Momentum Conservation Equation 6
1.2.5 Historical Review of the Eddy Covariance Approach 8
1.3 Using Eddy Covariance Fluxes for Land Surface Process Parameterization 13
1.4 Scope of This Study 16
Chapter 2 Study Site 17
2.1 Site Description 17
2.2 Instruments Setup 19
2.3 EC Data Processing 23
Chapter 3 Determining Adequate Averaging Periods and Reference Coordinates 25
3.1 Data Set 26
3.2 Coordinate Rotations 26
3.3 The Energy Closure Fraction 28
3.4 Averaging Period Evaluation 28
3.5 Footprint Analysis 29
3.6 Micrometeorology 30
3.7 Energy Balance Components 32
3.8 Variations of Daily Energy Closure Fractions 34
3.9 Effects of Increasing Averaging Period 38
3.10 Variation of Energy Closure Fraction 42
Chapter 4 Developing a Gap-filling Model for Eddy Covariance Latent Heat Flux 47
4.1 Data Processing and Flux Gaps Identification 48
4.2 Gap-filling model 48
4.2.1 Environmental Variables 50
4.2.2 Principal Component Analysis 50
4.2.3 Interpolation Approaches 51
4.3 Model Calibration and Error Assessment 53
4.4 Flux Gaps Evaluation 54
4.5 Controlling Factors of Latent Heat Flux 56
4.6 Model Calibration 58
4.6.1 K values for KNN approach 58
4.6.2 Regression coefficients for MRS approach 58
4.7 Model Validation and Error Assessment 61
4.8 Evapotranspiration at the LHC site 64
Chapter 5 Parameterizing the Surface Resistance for Penman-Monteith Equation to Estimate Evapotranspiration 67
5.1 Dataset 68
5.2 Penman-Monteith Equation and Calculation of Climatic, Aerodynamic, and Surface Resistance 68
5.3 Katerji -Perrier Resistance Model and Rational Coefficient 70
5.4 Micrometeorological Condition 71
5.5 Seasonal Variation in Energy Fluxes 72
5.6 KP Model Calibration and Validation 74
5.7 Sensitivity Analysis of Using KP Model 80
5.8 Temporal Variability in Evapotranspiration 81
Chapter 6 Conclusions and Future Works 89
6.1 Adequate Averaging Periods and Reference Coordinates 90
6.2 Gapfilling Model for EC Latent Heat Flux 91
6.3 Surface Resistance Parameterizing and Seasonal Variability in Evapotranspiration 91
6.4 Future Works 92
BibliographyR1
APPENDIX
A. Data processing software (GUI and some excitable programs)
B. Resume
List of Figures
Figure 1.1 Illustration of the relationships between vertical surface flux and other components 5
Figure 1.2 Sketch of the generation of secondary circulation due to landscape heterogeneity. 10
Figure 1.3 Fishbone plot of problems in using eddy covariance system 12
Figure 1.4 Sketch of the surface parameterization using top-down approach for the Penman- Monteith equation. 14
Figure 2.1 The watershed boundary of the Zhuo-Shui River and its’ tributary, the Shu-Li River, located at the central Taiwan (a), the location of the sub-catchments, LHC WS04 and LHC WS05, at the top of the drainage area of the Shui-Li River, a 3-D topographic plot of the Shu-Li Catchment (red line) and upper part of the Shu-Li river is characterized as the gentle rolling terrain, LHC study site(yellow line) 18
Figure 2.2 The topographic contour map of the LHC study site (LHC WS05), the flux tower(red-circle) coordinates are 23o55’52’’ N., 120o53’39’’ E., the star symbols indicate locations of three soil moisture probes, the arrows indicate the flow directions of nearby ephemeral streams. 19
Figure 2.3 Climatology of LHC site, monthly precipitation, relative humidity, air temperature, pan evaporation from 1961-1998, annual precipitation: 2229.1, pan evaporation: 1021.1 (unit in mm) 20
Figure 2.3 Vegetation at LHC station, LAI~5 during the summer (Photo taken by I-Fu Yuan, 2009) 22
Figure 2.4 Eddy covariance system setup at LHC station 22
Figure 2.5 The flow chart of the EC data process program that includes several EC data process algorithms including reference coordinate, WPL correction, frequency, footprint analysis for eddy flux QC/QA process. 24
Figure 3.1 Wind rose chart at the LHC site; (a) in daytime (06:00-18:00 local time), and (b) in nighttime (18:00-06:00 local time) 31
Figure 3.2 Volumetric soil moisture variation averaged from 0 to 20 cm beneath the surface at the LHC site during the study period (71 days in 2008 and 70 days in 2009) 32
Figure 3.3 The diurnal cycle of hourly averaged Rn, G, , H, and LE at the LHC site and the bar indicates the standard deviation (NR with 60 min averaging period for H and LE fluxes); (a) dry season; (b) for wet season 33
Figure 3.4 Variations of daily energy closure fraction computed with different averaging periods and rotation approaches; solid blue line with circle is for the Planar-Fit rotation, dash-dot red line with square is for the double rotation and dash green line with delta is without any rotation; the bar indicates the standard deviation of daily energy closure for each run; (a) dry season, (b) wet season, and (c) both dry season and wet season 37
Figure 3.5 The Ogive curves of kinematic latent heat fluxes for every 2 hours local time (PFR with 2 hr averaging period) 40
Figure 3.6 The Ogive curves of kinematic sensible heat fluxes for every 2 hours local time (PFR with 2 hr averaging period) 40
Figure 3.7 The hourly energy closure fraction with PFR at different friction velocity classes; dashed-dot line with circle is 15 min averaging period, dashed line with square is 30 min averaging period, solid line with delta is 60 min averaging period. Data are binned at a friction velocity interval of 0.05 m s-1 41
Figure 3.8 The daily energy closure fraction with the PFR approach for 15 min and 60 min averaging periods; square and delta symbols represent 15 min and 60 min averaging periods, respectively; the solid blue and dash red lines are fitted curves with the second order polynomials 41
Figure 3.9 Relationship between volumetric soil moisture and daily (a) energy closure fraction, (b) wind speed, and (c) net radiation. The symbols represent binned average for each soil moisture class. The bars show the standard deviation of variables at each soil moisture class. The soil moistures are classified into four classes: Class 1 is less than 0.175; Class 2 is between 0.175 and 0.275; Class 3 is between 0.275 and 0.375; and Class 4 is greater than 0.375 (PFR with 60min averaging period) 44
Figure 3.10 Spatial distribution of maximum footprint locations for different soil moisture classes, (a) Class 1, (b) Class 2, (c) Class 3, and (d) Class 4; the flux tower is located at the origin; colors give the footprint density values in percentage (%), with the same color scales used for all graphs. The maximum footprint locations are parameterized with atmospheric stability and a length scale along the mean wind direction after Hsieh et al. (2000) (PFR with 60min averaging period) 45
Figure 4.1 Flow chart of the proposed LE gapfilling model 49
Figure 4.2 Distribution of flux gaps by day and hour through 2008 (a) and 2009 (b); for each time step, the total score higher than 2 points was identified as the flux gap (warm color states the score over 2 points); the eddy flux will be rejected and replaced with gap-filled flux 55
Figure 4.3 Relationship between LE flux and PCs for clear sky condition, PC1 (a), PC2 (b), PC3 (c), and PC4 (d). The error bars show the stand deviation of the mean LE value within each PC class. The trend lines are derived from second order polynomial curves 59
Figure 4.4 Relationship between LE flux and PCs for nighttime/cloudy condition, PC1 (a), PC2 (b), PC3 (c), and PC4 (d). The error bars show the stand deviation of the mean LE value within each PC class. The trend lines are derived from second order polynomial curves 59
Figure 4.5 Performance of the developed LE gap-filling model with different k values, presented in circle symbols (clear sky runs) and in rectangular symbols (nighttime/cloudy runs); the bars indicate the standard deviation in each class 61
Figure 4.6 Error assessment of the developed LE gap-filling model at various time scales, daily (a), weekly (b), monthly (c), and bimonthly (d) at different percentage of artificial gaps from 5% to 40% 63
Figure 4.7 Gap-filled LE fluxes for year 2008 (a) and year 2009 (b) at LHC study site, annual evapotranspiration for 2008 and 2009 are 736 mm and 728 mm, respectively 65
Figure 5.1 Overview of the daily micrometeorological conditions over the study site during 2008-2011: (a) soil moisture and cumulative daily rainfall; (b) average wind speed; (c) average vapor pressure deficit; (d) average temperature 72
Figure 5.2 The surface energy components measured by the flux tower and eddy covariance approach; (a)surface net radiation flux, Rn; (b) ground heat flux, G; (c) latent heat flux, LE; and sensible heat flux, SH ; over the study site during 2008-2010 73
Figure 5.3 Analysis of the regression relationship between inverted surface resistance rc and critical resistance r* for the calibration data set. ra is the aerodynamic resistance; different θ classes (a) θclass:15; (b) θclass:18; (c) θclass: 21; (d) θclass:24; (e) θclass:27; (f) θclass:30; (g) θclass:33; (h) θclass:36; (i)θclass: all classes. 76
Figure 5.4 The relationship between the regression coefficients, slope a and interception b, and soil moisture for 8 different soil moisture classes from 15% to 36%. 77
Figure 5.5 Regression between measured and modeled hourly evapotranspiration values by KP model using constant approach 78
Figure 5.6 Regression between measured and modeled hourly evapotranspiration values by KP model using soil moisture approach 78
Figure 5.7 The sensitivity of latent heat flux estimation in function of net radiation (right triangle), air temperature (delta), wind speed (square), and relative humidity (gradient) 80
Figure 5.8 Daytime (08:00-18:00) average (a) αPT coefficient, (b) surface resistance, (c) critical resistance, and (d) aerodynamic resistance from 2008 to 2011; red square is αPT coefficient; blue delta is surface resistance; green delta is the critical resistance; black circle is the aerodynamic resistance 82
Figure 5.9 Diurnal course of PT coefficient α (a) and equilibrium evapotranspiration LEeq (b) for the dry season and PT coefficient αPT (c) and equilibrium evapotranspiration LEeq (d) for the wet season, during the study period (2008 to 2011). The dash-dot lines indicated the daytime hours from 08:00-18:00 83
Figure 5.10 Diurnal patterns in aerodynamic resistance (a), critical resistance (b), and surface resistance (c) over the dry season; and diurnal patterns in aerodynamic resistance (d), critical resistance (e), surface resistance (f) over the wet season, for the entire study period (2008 to 2011). The dash-dot lines indicated the daytime hours from 8:00-18:00 LT 85
List of Tables
Table 2.1 Descriptions of models, sampling rates and measurement heights of instruments installed at the LHC site 21
Table 3.1 Average daily integrated latent heat (LE) and sensible heat (H) fluxes with different averaging periods and coordinate rotations for all seasons, the (std) stands for the standard deviation of daily energy closure fraction (CF), and B is the Bowen ratio for whole available data from 2008-2009 (71 +70 days) 36
Table 4.1 Weighting coefficients of each environmental variable and PC loading for clear sky and nighttime/cloudy conditions 57
Table 4.2 Model calibration with the Nash-Sutcliffe efficiency for KNN approach with different K values or for MRS approach, during clear sky or nighttime/cloudy in 2008 60
Table 4.3 Regression coefficients of the second order polynomial equation for clear sky and nighttime/cloudy conditions 60
Table 4.4 Daily average latent heat fluxes of random-selected days during clear sky or nighttime/cloudy in 2009, calculated by LE gap-filled model by KNN with different K values or by MRS as the LE predictions (Prd.); and QC/QA passed LE noted as observations (Obs.) 62
Table 4.5 Estimation errors of the LE gap-filling model at daily (a), weekly (b), monthly (c), bimonthly (d) time scales, containing different percentage of artificial gaps from 5 % to 40 % in 2009 63
Table 5.1 Summary the coefficients, slope a and interception b, calibrated by constant approach and soil moisture approach 75
Table 5.2 Regression coefficients for soil moisture approach 79
Table 5.3 Seasonal evapotranspiration estimated by KP model with soil moisture approach on hourly time scale from 2008 to 2011, ET units in (mm) 81
Table 5.4 Seasonal average value of equilibrium evaporation LEeq, PT parameter αPT, aerodynamic resistance ra, critical resistance r*, surface resistance rc, and temperature gradient parameters used in Equation(8), LEeq unit in (MJ m-2); ra, r*,and rc units in (s m-1); Δ and γ units in (Pa oC-1) 83
參考文獻 [1] Alavi, N., Warland, J.S., Berg, A.A., 2006. Filling gaps in evapotranspiration measurements for water budget studies: Evaluation of a Kalman filtering approach. Agricultural and Forest Meteorology, 141, 57-66
[2] Amarakoon, D., Chen, A., McLean P., 2000. Estimating daytime latent heat flux and evapotranspiration in Jamaica. Agricultural and Forest Meteorology, 102, 113-124.
[3] Anderson, D.E., Verma, S.B., Rosenberg, N.J., 1984. Eddy correlation measurements of CO2, latent heat and sensible heat fluxes over a crop surface. Boundary-Layer Meteorology, 29, 167-183.
[4] Apipattanavis, S., Podesta, G., Rajagopalan, B., Katz, R.W., 2007. A semiparametric multivariate and multisite weather generator. Water Resources Research, 43, W11401, doi:10.1029/2006WR005714.
[5] Arora, V., 2002. Modeling vegetation as a dynamic component in soil-vegetation-atmosphere transfer schemes and hydrological models. Review of Geophysics, 40, 1006, doi:10.1029/2001RG000103.
[6] Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T. et al., 2000: Estimates of the annual net carbon and water exchange of European forests: the EUROFLUX methodology. Advance in Ecological Research, 30, 114-175.
[7] Aubinet, M., Chermanneb, B., Vandenhaute, M., Longdoz, B., Yernaux, M., Laitat, E., 2001. Long term carbon dioxide exchange above a mixed forest in the Belgian Ardennes. Agricultural and Forest Meteorology, 108, 293-315.
[8] Baldocchi, D., 2008. ‘Breathing’ of the Terrestrial Biosphere: Lessons Learned from a Global Network of Carbon Dioxide Flux Measurement Systems. Aust. J. Bot., 56, 1-26.
[9] Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., et al., 2001. FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor and energy flux densities. Bull. Am. Meteorol. Soc., 82, 2415-2434.
[10] Baldocchi, D., Finnigan, J., Wilson, K., Paw U, K.T., Falge, E., 2000. On measuring net ecosystem carbon exchange in complex terrain over tall vegetation. Boundary-Layer Meteorology, 96, 257-291.
[11] Ball, J.T., 1988. An analysis of stomatal conductance. Ph.D. thesis, Stanford University, 89 pp.
[12] Ball, J.T., Woodrow, I.E. & Berry, J.A. 1987. A model predicting stomatal conductance and its contribution to the control of photosynthesis under different environmental conditions. In: Biggens J. (ed.). Progress in Photosynthesis Research, 4, 221-224.
[13] Barr, A.G., Morgenstern, K., Black, T. A., McCaughey, J. H., Nesic, Z., 2006. Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux, Agricultural and Forest Meteorology, 140, 322-337.
[14] Berbigier, P., Bonnefond, J.M., Mellmann, P., 2001. CO2 and water vapour fluxes for 2 years obove Euroflux forest site. Agricultural and Forest Meteorology, 108, 183-197.
[15] Boussinesq, J, 1877. Essai sur la th´eorie des eaux courantes. Mem Savants Etrange, 23, 1-46.
[16] Brubaker, K. L., Entekhabi, D., 1996. Analysis of feedback mechanisms in land-atmosphere interaction. Water Resource Research, 32(5), 1343-1357.
[17] Brutsaert, W., 1998. Lnad-surface water vapor and sensible heat flux: Spatial variability, homogeneity, and measurement scales. Water Resource Research, 34, 10 2433-2442.
[18] Brutsaert, W., 2005. Evaporation in Hydrology: An introduction, Cambridge University Press, UK.
[19] Businger, J.A., 1982. Equations and concepts. In: Nieuwstadt FTM, Van Dop H (eds) Atmospheric turbulence and air pollution modelling: a course held in The Hague, 21-25 September 1981. D. Reidel Publ. Co., Dordrecht, 1-36
[20] Casa, R., Russell, G., Lo Cascio, B. 2000. Estimation of evapotranspiration from a field of linseed in central Italy. Agricultural and Forest Meteorology, 104, 289-301.
[21] Cava, D., Contini, D., Donateo, A., Martano, P., 2008. Analysis of short-term closure of the surface energy balance above short vegetation. Agricultural and Forest Meteorology, 148, 82-93.
[22] Chen, C.S., Chen, Y.L., 2003. The Rainfall Characteristics of Taiwan. Monthly Weather Review, 131, 1323-1341.
[23] Chen, Y.Y., Li, M.H., 2007. Effect of Coordinate Rotation on Estimating Surface Heat and Water Vapor Fluxes over Mountainous Terrain. The 6th AsiaFlux Workshop, Tayuan, Taiwan.
[24] Chen, Y.Y., Li, M.H., 2012. Determining adequate averaging periods and reference coordinates for eddy covariance measurements of surface heat and water vapor fluxes over mountainous terrain. Terrestrial, Atmospheric and Oceanic Sciences (Accepted).
[25] Chen, Y.Y., Chu, C.R., Li, M.H., 2012. A gap-filling model for eddy covariance latent heat flux: estimating evapotranspiration of a subtropical seasonal evergreen Broad-leaved forest as an example. Journal of Hydrology, (with Editor).
[26] Cho, J., Oki, T., Yeh, P. J.-F., Kim, W., Kanae, S., Otsuki, K., 2010. On the relationship between the Bowen ratio and near-surface temperature. Theoretical and Applied Climatology, DOI 10.1007/s00704-011-0520-y.
[27] Collatz, G. J., Ball, J. T., Grivet, C. J., Berry, A., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54, 107-136.
[28] Collatz, G.J., Ribas-Carbo, M., Berry, J.A., 1992. Coupled Photosynthesis-Stomatal Conductance Model for leaves of C4 plants. Aust. J. Plant Physiol., 19, 519-538.
[29] Coppin, P.A., Taylor, K.J., 1983. A three component sonic anemometer/thermometer system for general micrometeorological research. Boundary-Layer Meteorology, 27, 27-42.
[30] Coppin, P.A., Taylor, K.J., 1983. A three component sonic anemometer/thermometer system for general micrometeorological research. Boundary-Layer Meteorology, 27, 27-42.
[31] Dara, E., Ghassem, R. Asrar, A., et al., 1999. An Agenda for Land Surface Hydrology Research and a Call for the Second International Hydrological Decade. Bulletin of the American Meteorological Society, 80(10), 2043-2058.
[32] de Vries, D. A., 1963. Thermal properties of soils. 210-235. In W.R. Van Wijk (ed.) Physics of plant environment. North-Holland Publ. Co., Amsterdam.
[33] Desjardins, R., 1977. Description and evaluation of a sensible heat flux detector. Boundary- Layer Meteorology, 11, 147-154.
[34] Desjardins, R., J. MacPherson, P. Schuepp, F. Karanja, 1989. An evaluation of aircraft flux measurements of CO2, water vapor and sensible heat. Boundary-Layer Meteorology, 47, 55-69.
[35] Detto, M., Montaldo, N., Albertson, J. D., Mancini, M., Katul, G., 2006. Soil moisture and vegetation controls on evapotranspiration in a heterogeneous Mediterranean ecosystem on Sardinia, Italy. Water Resources Research., 42, W08419, doi:10.1029/2005WR004693.
[36] Dickinson, R.E., Henderson-Sellers A., Kennedy, P. J., 1993. Biosphere-atmosphere transfer scheme (BATS) version 1e as coupled to the ncar community climate model. NCAR Technical Note NCAR=TN-387+STR, NCAR.
[37] Dirmeyer, P.A., 1994. Vegetation stress as a feedback mechanism in midlatitude drought. Journal of Climate., 7, 1463-1483.
[38] Falge, E., Baldocchi, D.D., Olson, R., Anthoni, P., Aubinet, M., Bernhofer, C., et al., 2001. Gap filling strategies for defensible annual sums of net ecosystem exchange. Agricultural and Forest Meteorology, 107, 43-69.
[39] Farquhar, G.D., von Caemmerer, S., Berry, J.A., 1980. A biochemical model of photosynthetic CO2 fixation in leaves of C3 species. Planta, 149, 78-90.
[40] Finnigan, J.J., Clement, R., Mahly, Y., Leuning, R., Cleugh, H.A., 2003. A re-evaluation of long-term flux measurement techniques-Part I: averaging and coordinate rotation. Boundary-Layer Meteorology, 107, 1-48.
[41] Fisher, J.B., de Biase, T.A., Qi, Y., Xu, H.M., Goldstein, A. H., 2005. Evapotransipration models compared on a Sirra Nevada forest ecosystem. Environmental Modeling & Software 20, 783-796.
[42] Foken, T., Wichura, B. 1996. Tools for quality assessment of surface-based flux measurements. Agricultural and Forest Meteorology, 78, 83-105.
[43] Foken, T., Gockede, M., Mauder, M., Marth, L., Amiro, B.D., Munger, J.W., 2004. Post-field quality control. In Lee, X., Massman, W., Law, B. (Editors): Handbook of Micrometeorology: A Guide for Surface Flux Measurement and Analysis. Kluwer, Dordrecht, 81-108.
[44] Foken, T., Wimmer, F., Mauder, M., Thomas, C., Liebethal, C., 2006. Some aspects of the energy closure problem. Atmospheric Chemistry and Physics, 6, 4395-4402.
[45] Foken, T., 2008a, Micrometeorology. Springer, Berlin/Heidelberg, 308 pp.
[46] Foken, T., 2008b. The energy balance closure problem: an over view. Eol. Appl., 18(6), 1351-1367.
[47] Foken, T., Mauder, M., Liebethal, C., Wimmer, F., Beyrich, F., Leps, J.P., Raasch, S., DeBruin, H., Meijninger, W., Bange, J., 2010. Energy balance closure for the LITFASS-2003 experiment. Theoretical and Applied Climatology, 101, 149-160.
[48] Garratt, J.R., 1994, The Atmospheric Boundary Layer, Cambridge University Press, 316 pp.
[49] Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W., Sitch, S., 2004. Terrestrial vegetation and water balance-hydrological evaluation of a dynamic global vegetation model. Journal of Hydrology, 286(1), 249-270.
[50] Göckede, M., Rebmann, C., Foken, T., 2004. A combination of quality assessment tools for eddy covariance measurements with footprint modelling for the characterisation of complex sites. Agricultural and Forest Meteorology, 127, 175-188.
[51] Göckede, M., Foken, T., Aubinet, M., Aurela, M., Banza, J., et al., 2008. Quality control of CarboEurope flux data-Part 1: Coupling footprint analyses with flux data quality assessment to evaluate sites in forest ecosystems, Biogeosciences, 5, 433-450.
[52] Greco, S., Baldocchi, D.D., 1996. Seasonal variations of CO2 and water vapour exchange rates over a temperate deciduous forest. Global Change Biology, 2, 183-197.
[53] Guo, X., Zhang, H., Kang, L., Du, J., Li, W., Zhu, Y., 2007. Quality control and flux gap filling strategy for Bowen ratio method: revisiting the Priestley-Taylor evaporation model. Environ. Fluid Mech., 7(5), 421-437.
[54] Gurmessa, T., Bárdossy, A., 2009. A principal component regression approach to simulate the bed-evolution of reservoirs. Journal of Hydrology, 368(1-4), 30-41.
[55] Hanafusa, T., Fujitana, T., Kobori, Y., Mitsuta, Y., 1982. A new type sonic anemometer- thermometer for field operation. Pap Meteorol Geophys, 33, 1-19.
[56] Hasler, N., Avissar, R., 2006. What controls evapotranspiration in the Amazon basin? Journal of Hydrometeorology, 8, 380-395.
[57] Hatfield, J.L., Allen, R. G., 1996. Evapotranspiration estimates under deficient water supplies. Journal of irrigation and drainage engineering, 122(5), 301-308.
[58] Haugen, D., 1972. Workshop on micrometeorology, Lexington, Massachusetts, December.
[59] Hollinger, D.Y., Kelliher, F.M., Byers, J.N., Hunt, J.E., McSeveny, T.M., Weir, P.L., 1994. Carbon dioxide exchange between an undisturbed old-growth temperate forest and the atmosphere, Ecology, 75, 134-150.
[60] Hong, N.M., Tung, C.P., Chen, C., 2012. A procedure to estimate cover coefficient and parameters of soil moisture stress function using soil moisture monitoring data. Paddy and Water Environment, doi:10.1007/s10333-012-0315-5.
[61] Hsieh, C.I., Katul, G.G., Chi, T., 2000. An approximate analytical model for footprint estimation of scalar fluxes in thermally stratified atmospheric flows. Advance in Water Resources, 23, 765-772.
[62] Hui, D., Wan, S., Su, B., Katul, G., Monson, R., Luo, Y., 2004. Gap-filling missing data in eddy covariance measurements using multiple imputation (MI) for annual estimations. Agricultural and Forest Meteorology, 121, 93-111.
[63] Hwong, J. L., 2010. Studies on the characteristics of hydrology and water chemistry between natural hardwood and China-fir plantation forests in Lienhuachih experimental watersheds, Doctoral Dissertation, School of Forestry and Resource Conservation, College of Bioresource and Agriculture, National Taiwan University. (in Chinese)
[64] Irmak, S., Allen, R. G., Whitty, E.B., 2003. Daily grass and alfalfa-reference evapotranspiration estimates and alfalfa-to-grass evapotranspiration ratios in Florida. Journal of Irrigation and Drainage Engineering, 129(5), 360-370.
[65] Irmak, S., Mutiibwa, D., 2010. On the dynamics of canopy resistance: Generalized linear estimation and relationships with primary micrometeorological variables. Water Resources Research, 46, W08526, doi:10.1029/2009WR008484.
[66] Jacobs, C.M.J., de Bruin, H.A.R. 1997. Predicting regional transpiration at elevated atmospheric CO2: influence of the PBL-vegetation interaction, J. Appl. Meteorol. Clim., 36, 1663-1675.
[67] Jarvis, A.J., Stauch, V.J., Schulz, K., Young, P.C., 2004. The seasonal temperature dependency of photosynthesis and respiration in two deciduous forests. Global Change Biol., 10, 939-950.
[68] Jarvis, P. G., 1976. The interpretation of the variations in leaf water potential and stomatal conductance found in canopies in the field, Philos. T. Roy. Soc. B., 273, 593-610.
[69] Jarvis, P.G., McNaughton, K.G. 1986. Stomatal control of transpiration: Scaling up from leaf to region. Advances in Ecological Research, 15, 1-49.
[70] Jolliffe, I.T., 2002. Principal component analysis, 2nd Ed., Springer-Verlag, New York.
[71] Juang, J.Y., Katul, G.G., Porporato, A., Stoy, P.C., Siqueira, M., Detto, M., Kim, H.-S., Oren, R., 2007. Eco-hydrological controls on summertime convective rainfall triggers, Global Change Biol., 13(4), 887-896.
[72] Kaimal, J.C., Finnigan, J.J. 1994. Atmospheric Boundary Layer Flows, Oxford University Press, 289 pp.
[73] Katerji, N., Perrier, A., 1983. Modélisation de l’évapotranspiration réelle d’une parcelle de luzerne: rôle d’un coefficient cultural. Agronomie, 3(6), 513-521.
[74] Komatsu, H., 2003. Values of the decoupling factor observed on forest canopies. Journal of Japan Sociality Hydrological and Water Resource, 16(4), 423-438.
[75] Komatsu, H., 2004. A general method of parameterizing the big-leaf model to predict the dry-canopy evaporation rate of individual coniferous forest stands. Hydrological processes, 18, 3019-3036.
[76] Komatsu, H., Hotta, N., Kume, T., 2007. What is the best way to represent surface conductance for a range of vegetated sites? Hydrological processes, 21, 1142-1147.
[77] Koster, R.D., Dirmeyer, P.A., Guo, Z., Bonan, G., Chan, E., Cox, P., et al., 2004. Regions of Strong Coupling Between Soil Moisture and Precipitation, Science, 305, 1138, DOI: 10.1126/science.1100217.
[78] Kosugi, Y., Takanashi, S., Tanaka, H., Ohkubo, S., Tani, M., Yano, M., Katayama, T., 2007. Evapotranspiration over a Japanese cypress forest. I. Eddy covariance fluxes and surface conductance characteristics for 3 years. Journal of Hydrology, 337, 269-283.
[79] Kumagai, T., Saitoh, T. M., Satoc, Y., Morookad, T., Manfroid, O. J., Kurajid, K., Suzuki, M. 2004. Transpiration, canopy conductance and the decoupling coefficient of a lowland mixed dipterocarp forest in Sarawak, Borneo: dry spell effects. Journal of Hydrology, 287, 237-251.
[80] Lafleur, P.M., Hember, R.A., Admiral, S.W., Roulet, N.T., 2005. Annual and seasonal variability in evapotranspiration and water table at a shrub-covered bog in southern Ontario, Canada. Hydrological Processes, 19, 3533-3550
[81] Launiainen, S., Katul, G., Kolari, P., Vesala, T., Hari, P., 2011. Empirical and optimal stomatal controls on leaf and ecosystem level CO2 and H2O exchange rates. Agricultural and Forest Meteorology, 151(12), 1672-1689.
[82] Law, B.E., Falge, E., Gu, L.H., Baldocchi, D., Pakwin, P., Berbigier, P., et al., 2002. Environmental controls over carbon dioxide and water vapor exchange of terrestrial vegetation. Agricultural and Forest Meteorology, 113, 97-120.
[83] Lecina, S, Martinez-Cob, A., Pérez, F. G., Villalobos, F. G., Baselga, J. J., 2003. Fixed versus variable bulk canopy resistance for reference evapotranspiration estimation using the Penman-Monteith equation under semiarid conditions. Agricultural Water Management, 60, 181-198.
[84] Lee, X., 1998. On micrometeorological observations of surface-air exchange over tall vegetation. Agricultural and Forest Meteorology, 91, 39-49.
[85] Lee, X., Finnigan, J., Paw U, K.T., 2004. Coordinate systems and flux bias error. In: Lee X, Massman, 33-66, W, Law B (eds.) Handbook of Micrometeorology, Kluwer Academic Publishers, Dordrecht.
[86] Lemeur, R., Zhang, L., 1990. Evaluation of three evapotranspiration models in terms of their applicability for an arid region. Journal of Hydrology, 114, 395-411.
[87] Leuning, R., 1995. A critical appraisal of a combined stomatal-photosynthesis model for C3 plants, Plant Cell Environ., 18, 339-355.
[88] Lhomme, J.P., 1991.The concept of canopy resistance: Historical survey and comparison of different approaches. Agricultural and Forest Meteorology, 54, 227-240.
[89] Li, L., Luo, G., Chen, X., Li, Y., Xu, G., Xu, H., Bai, J., 2011. Modeling evapotranspiration in Central Asia desert ecosystem. Ecological Modeling, 222, 3680-3691.
[90] Li, M.H., Tien, W.T., Tung, C.P., 2009. Assessing the impact of climate change on the land hydrology in Taiwan. Paddy and Water Environ., 7, 283-292.
[91] Lu, S.Y., K.J., Tang, H.Y., Ku, H.H., Huang, 2000. Climatic conditions of forested lands of Taiwan Forest Research Institute. Taiwan Journal Forest Science, 15(3), 429-440.
[92] Mahrt, L., 1998. Flux sampling errors for aircraft and towers. J. Atmos. Oceanic Technol., 15, 416-429.
[93] Malhi, Y., Pegoraro, E., Nobre, A.D., Pereira,M.G.P., Grace, J., Culf, A.D., Clement,R., 2002. Energy and water dynamics of a central Amazonian rain forest, Journal of Geophysical Research, 107(D20), 8061.
[94] Mauder, M., Jegede, O.O., Okogbue, E.C., Wimmer, F., Foken, T., 2007a: Surface energy flux measurements at a tropical site in West-Africa during the transition from dry to wet season. Theoretical and Applied Climatology, 89,171-183.
[95] Mauder, M., Oncley, S.P., Vogt, R., Weidinger, T., Ribeiro, L., Bernhofer, C., Foken, T., Kohsiek, W., De Bruin, H.A.R., Liu, H., 2007b. The energy balance experiment EBEX-2000. Part II: Intercomparison of eddy-covariance sensors and post-field data processing methods, Boundary-Layer Meteorology, 123, 29-54.
[96] McMillen, R.T., 1988. An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorology, 43, 231-245.
[97] Moffat, A.M., Papale, D., Reichstein, M., Holinger, D.Y., Richardson, A.D., Barr, A.G., et al., 2007. Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agricultural and Forest Meteorology,147, 209-232.
[98] Moncrieff, J.B., Massheder, J.M., de Bruin, H., Elberts, J., Friborg, T., Heusinkveld, B., et al., 1997. A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. Journal of Hydrology, 188-189, 589-611.
[99] Monteith, J.L., 1965. Evaporation and environment. The state and movement of water in living organisms, Symp. Soc. Exp. Biol. 19, Academic Press, NY, pp. 205-234.
[100] Montgomery, R.B., 1948. Vertical eddy flux of heat in the atmosphere. J. Meteorol., 5, 265-274.
[101] Nash, J.E., Sutcliffe, J.V., 1970. River flow forecasting through conceptual models part I -A discussion of principles. Journal of Hydrology, 10 (3), 282-290.
[102] Navick, K.A., Oren, R., Stoy, P.C., Siqueira, M.B.S., Katual, G.G., 2009. Nocturnal evapotranspiration in eddy-covariance records from three co-located ecosystems in the Southeastern U.S.: Implications for annual fluxes. Agricultural and Forest Meteorology, 149, 1491-1504.
[103] Oncley S.P., Foken,T., Vogt,R., Kohsiek, W., De Bruin, H., Bernhofer, C., Christen, A., et al., 2007. The energy balance experiment EBEX-2000. Part I: overview and energy balance. Boundary-Layer Meteorology, 123, 1-28.
[104] Ono, K., Mano, M., Miyata, A., Inoue, Y., 2008, Applicability of the Planar Fit Technique in Estimating Surface Fluxes over Flat Terrain using Eddy Covariance, Japanese Journal of Agriculture Meteorology, 64 (3), 121-130.
[105] Oren, R., Sperry, J. S., Katul, G., Pataki, D.E., Ewers, B.E., Phillips, N., Schafer, K.V. R., 1999. Survey and synthesis of intra- and inter-specific variation in stomatal sensitivity to vapour pressure deficit. Plant, Cell and Environment 22, 1515-1526.
[106] Paço, T. A., David, T. S., Henriques, M. O., Pereira, J. S., Banza, J., Pereira, F. L., Pinto, C., David, J. S., Valente, F., 2009. Evapotranspiration from a Mediterranean evergreen oak savannah: The role of trees and pasture. Journal of Hydrology, 369, 98-106.
[107] Papale, D., Valentini, R., 2003. A new assessment of European forests carbon exchanges by eddy fluxes and artificial neural network spatialization. Global Change Biol., 9, 525-535.
[108] Pauwels, V.R.N., Samson, R., 2006. Comparison of different methods to measure and model actual evapotranspiration rates for a wet sloping grassland. Agricultural Water Management, 82, 1-24.
[109] Paw U, K.T., Baldocchi, D., Meyers, T.P., Wilson, K.B., 2000. Correction of eddy-covariance measurements incorporating both advective effects and density fluxes. Boundary-Layer Meteorology, 97, 487-511.
[110] Penman, H.L., 1948. Natural evaporation from open water, bare soil and grass. Proc. R. Soc. London, A193, 120-145.
[111] Perez, P. J., Castellvi, F., Martinez-Cob, A., 2008. A simple model for estimating the Bowen ratio from climatic factors for determining latent and sensible heat flux. Agricultural and Forest Meteorology, 148, 25-37.
[112] Perez, P. J., Lecina, S., Castelli, F., Martínez-Cob, A., Villalobos, F. J., 2006. A simple parameterization of bulk canopy resistance from climatic variables for estimating hourly evapotranspiration. Hydrological processes, 20(3), 515-532.
[113] Pielke, R.A., Avissar, R., Raupach, M., Dolman, A.J., Zeng, X., Denning. S., 1998. Interaction between the atmosphere and terrestrial ecosystems: influence on weather and climate. Global Change Biol., 4, 461-475
[114] Priestley, C. H. B., Taylor, R. J., 1972. On the assessment of surface heat flux and evaporation using large-scale parameters. Monthly Weather Review, 100, 81-92.
[115] Qin, Z, Su, G., Zhang, J. Q., Yang, Y., Yu, Q., Li, J., 2010. Identification of important factors for water vapor flux and CO2 exchange in a cropland. Ecol. Model., 221, 575-581.
[116] Rana, G., Katerji, N., Ferrara, R. M., Martinelli, N., 2011. An operational model to estimate hourly and daily crop evapotranspiration in hilly terrain: validation on wheat and oat crops. Theoretical and Applied Climatology, 103, 413-426.
[117] Raupach, M.R., 1998. Influences of local feedbacks on land-air exchanges of energy and carbon. Global Change Biology, 4, 477-494.
[118] Rebmann, C., M. Göckede, T. Foken, M. Aubinet, M. Aurela, P. Berbigier, C., et al., 2005. Quality analysis applied on eddy covariance measurements at complex forest sites using footprint modeling. Theoretical and Applied Climatology, 80, 121-141.
[119] Rodriguez-Iturbe, I., D’Odorico, P., Porporato, A., Ridolfi, L. 1999. On the spatial and temporal links between vegetation, climate and soil moisture. Water Resources Research, 35(12), 3709-3722.
[120] Sakai, R.K., Fitzjarrald, D.R., Moore, K.E., 2001. Importance of low-frequency contributions to eddy fluxes observed over rough surfaces. Journal of Applied Meteorology and Climatology, 40, 2178-2192.
[121] Schmidt, A., Wrzesinsky, T., Klemm, O., 2008. Gap Filling and Quality Assessment of CO2 and Water Vapour Fluxes above an Urban Area with Radial Basis Function Neural Networks. Boundary-Layer Meteorol., 126, 389-413. DOI 10.1007/s10546-007-9249-7.
[122] Schulz, K., Jarvis, A. J., 2004. Environmental and biological controls on the seasonal variations in latent heat fluxes derived from flux data for three forest sites. Water Resources Research, 40, W12501, doi:10.1029/2004WR003155
[123] Sellers, P. J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G.D., Bounoua, L., 1996: A revised land surface parameterization (SiB2) for atmospheric GCMs Part I: Model formulation. Journal of Climate, 9, 676-705.
[124] Seneviratne, S.I., Luthi, D., Litschi, M., Schar, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443, 205-209.
[125] Seth, A., Giorgi, F., 1996. Three-dimensional model study of organized mesoscale circulations induced by vegetation. J. Geophys. Res. D: Atmos. 101, 7371-7391.
[126] Stauch, V.J., Jarvis, A.J., 2006. A semi-parametric gapfilling model for eddy covariance CO2 flux time series data. Global Change Biol., 12, 1707-1716.
[127] Stöckli, R., Vidale, P.L., 2005. Modeling diurnal to seasonal water and heat exchanges at European Fluxnet sites. Theoretical and Applied Climatology, 80, 229-243.
[128] Stoy, P.C., Katul, G.G., Siqueria, M.B.S., Juang, J.Y., Novick, K.A., Uebelherr, J.M., Oren, R., 2006. An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. Agricultural and Forest Meteorology, 141, 2-18.
[129] Stull, R. B., 1988. An Introduction to Boundary Layer Meteorology. Kluwer Academic Publishers, Dordrecht, 685 pp.
[130] Sun, X.M., Zhu, Z.L., Wen, X.F., Yuan, G.F., Yu, G.R., 2006. The impact of averaging period on eddy fluxes observed at ChinaFLUX sites. Agricultural and Forest Meteorology, 137(3-4), 188-193.
[131] Swinbank, W.C., 1951. The measurement of vertical transfer of heat and water vapor by eddies in the lower atmosphere. Journal of Meteorology, 8, 135-145.
[132] Tanaka, H., Hiyama, T., Kobayashi, N., Yabuki, H., Ishii, Y., Desyatkin, RV., Maximov, T.C., Ohta, T., 2008. Energy balance and its closure over a young larch forest in eastern Siberia, Agricultural and Forest Meteorology, 148 (12), 1954-1967.
[133] Tanner, C.B., Thurtell, G.W., 1969. Anemoclinometer Measurements of Reynolds Stress and Heat Transport in the Atmospheric Surface Layer, University of Wisconsin Tech. Rep., ECOM-66-G22-F, 82 pp.
[134] Taylor, G.I., 1938. The spectrum of turbulence. Proc. R. Soc., A164, 476-490
[135] Turnipseed, A.A., Blanken, P.D., Anderson, D.E., Monson, R.K., 2002. Energy budget above a high-elevation subalpine forest in complex topography, Agricultural and Forest Meteorology, 110 (3), 177-201.
[136] Twine, T.E., Kustas, W.P., Norman, J.M., Cook, D.R., Houser, P.R., Meyers, T.P., Prueger, J.H., Starks, P.J., Wesely, M.L., 2000. Correcting eddy-covariance flux underestimates over a grassland. Agricultural and Forest Meteorology, 103, 279-300.
[137] Valentini, R., Scarascia-Mugnozza, G.E., De Angelis, P., Bimbi, R., 1991. An experimental test of the eddy correlation technique over a Mediterranean macchia canopy, Plant, Cell and Environment, 14, 987-994.
[138] Vautard, R., Yiou, P., D’Andrea, F., Noblet, N., Viovy, N., Cassou, C., Polcher, J., et al., 2007. Summertime European heat and drought waves induced by wintertime Mediterranean rainfall deficit. Geophysical Research Letters, 34, doi:10.1029/2006GL028001.
[139] Verma, S.B., Baldocchi, D.D., Anderson, D.E., Matt, D.R., Clement, R.J., 1986, Eddy fluxes of CO2, water vapor and sensible heat over a deciduous forest, Boundary-Layer Meteorology, 36, 71-91.
[140] Verma, S.B., Kim, J., Clement, R., 1989. Carbon dioxide, water vapor and sensible heat fluxes over a tallgrass prairie, Boundary-Layer Meteorology, 46, 53-67.
[141] von Caemmerer, S., Farquhar, G.D., 1985, Kinetics and activation of Rubisco and some preliminary modelling of RuP2 pool sizes, in preceeding of the 1983 conference at Tollimn (J. Vill, G. Grishina, and A. Laisk, Eds.), Estollian Academy of sciences, Tallinn, pp 46-58.
[142] von Randow, C., Manzi, A.O., Kruijt, B., de Oliveira, P.J., Zanchi, F.B., Silva, R.L., Hodnett, M.G., et al., 2004. Comparative measurements and seasonal variations in energy and carbon exchange over forest and pasture in south west Amazonia, Theoretical and Applied Climatology, 78, 5-26
[143] Vourlitis, G.L., Priante, N., Hayashi, M.M.S., Nogueira, J.D., Caseiro, F.T., Campelo, J.H., 2002. Seasonal variations in the evapotranspiration of a transitional tropical forest of Mato Grosso, Brazil. Water Resour. Res., 38, doi:10.1029/2000WR000122.
[144] Wang, S., Robert, G., Diana, V., Andrew, B., 2002. Modeling carbon-coupled energy and water dynamics of a boreal aspen forest in a general circulation model land surface scheme. International Journal of Climatology, 22(10), 1249-1265.
[145] Webb, E.K., Pearman, G.I., Leuning, R., 1980. Correction of flux measurements for density effects due to heat and water vapor transfer. Quarterly Journal of the Royal Meteorological Society, 106, 85-100.
[146] Wesely, M. L., 1970. Eddy correlation measurement in the atmospheric surface layer over agricultural crops. Ph.D. Thesis, University of Wisconsin.
[147] Wever, L., Flanagan, L. B., Carlson, P. J., 2002. Seasonal and interannual variation in evapotranspiration, energy balance and surface conductance in a north temperate grass land. Agriculture and Forest Meteorology, 112, 31-49.
[148] Wilczak, J.M., Oncley, S.P., Stage, S.A., 2001. Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology, 99, 127-150.
[149] Wilson, K. B., Baldocchi, D. D., Aubient, M., Berbigier, P., Bernhofer, C., Dolman, H., et al., 2002a. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resources Research, 38, doi:10.1029/2001WR000989
[150] Wilson, K., Goldstein, A., Falge, E., Aubinet, M., Baldocchi, D., Berbigier, P., Bernhofer, C., et al., 2002b. Energy balance closure at FLUXNET sites. Agricultural and Forest Meteorology, 113, 223-243.
[151] Wilson, K.B., Baldocchi, D.D., Aubient, M., Berbigier, P., Bernhofer, C., Dolman, H., et al., 2002. Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour. Res., 38:1294. doi:10.1029/2001WR000989
[152] Xing, Z., Bourque, C.P.-A., Meng, F.-R., Cox, R.M., Swift, D.E., Zha, T., Chow, L., 2008. A process-based model designed for filling of large data gaps in tower-based measurements of net ecosystem productivity, Ecol. Model., 213 (2), 165-179.
[153] Yu, G., Song, X., Wang, Q., Liu, Y., Guan, D., Yan, J., Sun, X., Zhang, L., Wen, X., 2007. Water-use efficiency of forest ecosystems in eastern China and its relations to climatic variables, New Physiology, 177, 927-937.
[154] Yuan, R., Kang, M., Park, S., Hong, J., Lee, D., Kim, J., 2007. The Effect of Coordinate Rotation on the Eddy Covariance Flux Estimation in a Hilly KoFlux Forest Catchment, Korean Journal of Agricultural and Forest Meteorology, 9(2), 100-108.
[155] Yuan, R., Kang, M., Park, S., Hong, J., Lee, D., Kim, J., 2011: Expansion of the planar-fit method to estimate flux over complex terrain, Meteorology and Atmospheric Physics, 110,123-133.
[156] Yunusa, I.A.M., Walker, R.R., Lu, P., 2004. Evapotranspiration components from energy balance, sapflow and microlysimeter techniques for an irrigated vineyard in inland Australia. Agriculture and Forest Meteorology, 172, 93-107.
[157] Zhang, J., Rao, S.T., 1999. The role of vertical mixing in the temporal evolution of ground-level ozone concentrations. J. Appl. Meteorol., 38, 1674-1691.
[158] Zhou, L., Zhou, G., 2009. Measurement and modeling of evapotranspiration over a reed (Phragmites australis) marsh in Northeast China. Journal of Hydrology, 372, 41-41
[159] Zuo, J., Huang, J., Wang, J., Zhang, W. Bi, J., Wang, G., Li, W., Fu, P., 2009. Surface turbulent flux measurements over the Loess Plateau for a semi-arid climate change study. Advance in Atmospheric Sciences, 26, 679-691.
[160] Scanlon, T. M. and Kustas, W. P., 2010, Partitioning carbon dioxide and water vapor fluxes using correlation analysis, Agricultural and Forest Meteorology, 150, 89-99.
[161] Scanlon, T.M., Sahu, P., 2008. On the correlation structure of water vapor and carbon dioxide in the atmospheric surface layer: a basis for flux partitioning. Water Resour. Res. 44, W10418, doi:10.1029/2008WR006932.
[162] Kang, Minseok, Hyojung Kwon, Jung Hwa Cheon, Joon Kim, 2012. On Estimating Wet Canopy Evaporation from Deciduous and Coniferous Forests in the Asian Monsoon Climate. J. Hydrometeor, 13, 950-965. doi:10.1175/JHM-D-11-07.1
[163] Obukhov, A.M., 1951. Charakteristiki mikrostruktury vetra v prizemnom sloje atmosfery (Characteristics of the micro-structure of the wind in the surface layer of the atmosphere). Izv ANSSSR ser Geofiz 3, 49-68.
[164] Manabe, S., 1969. Climate and the ocean circulation. 1 the atmospheric circulation and the hydrology of the earth’s surface. Monthly Weather Review, 97(11), 739-774.
[165] Thom, A.S., 1972. Momentum, mass and heat exchange of vegetation. Quarterly Journal of the Royal Meteorological Society, 98:124-134.
[166] Farquhar, G.D., von Caemmerer, S., 1982. Modeling of photosynthesis response to environment conditions. In: “physiological plant ecology II”, (Eds O.L. Lange, P.S. Nobel, C.B. Osmond and H.Ziegler), Encyclopedia of Plant Physiology new series. Vol. 12B. Springer, Berlin, 550-588.
[167] Noilhan, J. and Planton, S., 1989. A simple parameterization of land surface processes for meteorological Models, Mon. Weather Rev., 117, 536-549.
[168] Alves, I., Perrier, A., Pereira, L.S., 1998. Aerodynamic and surface resistances of complete cover crops: how good is the “big leaf”? Transactions of the ASABE, 41(2), 345-351.
[169] Grelle, A., Lindroth, A., Molder, M., 1999. Seasonal variation of boreal forest surface conductance and evaporation. Agricultural and Forest Meteorology, 98-99, 563-578.
[170] Wang, S., 2000. Modelling water, carbon and nitrogen dynamics in CLASS- Canadian Land Surface Scheme. Ph.D. Thesis, University of Alberta, Edmonton, Alberta.
[171] Rana, G., Katerji, N., Perniola, M., 2001. Evapotranspiration of sweet sorghum: a general model and multilocal validity in semi-arid environmental conditions. Water Resources Research, 37(12), 3237-3246.
[172] Lettenmaier, D.P., Famiglietti, J. S., 2006. Water from on high. Nature, 444, 562-563.
[173] Oki, T., Kanae, S., 2006. Global hydrological cycles and world water resources. Science, 313, 1068-1072.
[174] Monteith, J., Unsworth, M., 2008. Principles of Environmental Physics, 3rd ed. Academic Press, Burlington.
[175] Shi, T., Guan, D., Wang, A., Wu, J., Jin, C., Han, S., 2008. Comparison of three models to estimate evapotranspiration for a temperate mixed forest. Hydrological Processes, 22(17), 3431-3443.
[176] Katerji, N., Rana, G., Mastrorilli, M., 2010. Modelling of actual evapotranspiration in open top chambers (OTC) at daily and seasonal scale: Multi-annual validation on soybean in contrasted conditions of water stress and air ozone concentration. European Journal of Agronomy, 33, 218-230.
[177] Katerji, N., Rana, G., Fahed, S. 2011. Parameterizing canopy resistance using mechanistic and semi-empirical estimates of hourly evapotranspiration: critical evaluation for irrigated crops in the Mediterranean. Hydrological Processes, 25, 117-129.
指導教授 李明旭(Ming-hsu Li) 審核日期 2012-7-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明