博碩士論文 996202602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.117.182.179
姓名 英萬(Irwan)  查詢紙本館藏   畢業系所 地球物理研究所
論文名稱 大地電磁影像加強了解地熱構造:宜蘭清水地熱案例
(Magnetotelluric Imaging Improves Understanding of Geothermal System: Case in Chingshui Geothermal Area, Northeastern Taiwan)
相關論文
★ 時間域電磁法應用於地下金屬之探測★ 應用地電阻法於土石流地滑之研究
★ 大地電磁資料多站多頻分析於 台灣中部及金門地區地殼電性構造★ 台灣東部利稻池上地區深部電性構造
★ 大地電磁法探查台灣清水地熱區★ 大地電磁法應用在台灣地區之海岸效應
★ 車籠埔斷層與梅山斷層之地電研究★ 應用大地電磁法研究台灣地區之電性構造
★ 臺灣深部電性構造及其板塊構造意義★ 整合地球物理方法研究變質岩區地熱構造-以金崙地熱區為例
★ 活動斷層電性研究 — 以湖口、新城及山腳斷層為例★ 宜蘭平原南緣山區之電性構造
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 清水地熱是台灣發展最完整之地熱區,其熱源來自入侵淺部(~2km)之火成岩體造成高地熱流與地溫梯度,變質砂岩中一些東北向深部斷層系統提供天水深循環(3He/4He比值)之熱水通路。本研究再處理原資料,包括二維模擬及逆推,結果顯示(圖5.2) 沿清水斷之低電阻異常(C1 與 C2)
是清水地熱儲集層,其上之粘土化礦物屬地熱蓋層。清水斷層是熱水上升至地表之主要通道,此外,高電阻多裂隙(微震密集)圍岩R2以及東側鄰近之火成入侵體R1屬清水地熱熱源。
本研究最重要之發現是在淺部C1與C2 5Km下存在深部區域性低電
阻異常C3,兩者彼此經由清水斷層相連,C3可能是未來清水地熱發展加強型地熱主要目標。大地電磁併合地質、地物以及地化確實加強了解清 水地熱構造。
摘要(英) The well known geothermal field in Taiwan is Chingshui geothermal area (CGA). The existence of a shallow (~2km) intrusive igneous rock results in a high heat flow and geothermal gradient. The NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. This study reprocess the 2D modeling and inversion of CGA MT data. The result (Fig. 5.2) shows that anomalously conductive (3-100 ?m) zones, C1 and C2, obtained along the Chingshui fault may represent the geothermal reservoir in this area and the cap formed by clay mineral on top of it. Chingshui fault may act as a main conduit for fluid migration toward the surface. Meanwhile, the high resistivity (300-1000 ?m) host rock, with high temperature gradient and fracture dominated (seismicity indicated) (R2), together with the magma intrusion nearby (R1) represent the possible heat source of CGA.
The most interesting feature of this study is the finding of another deeper conductor (C3). C3 conductor is at about 5 km beneath the shallow conductor C1 and C2. All conductors (C1, C2 and C3) in CGA are connected each other by Chingshui fault. However, C3 conductor is most probably the highest potential for enhanced or engineered geothermal system (EGS) in CGA as it owns regional, rather local, enhanced hear and fluid. MT sounding technique, by joint interpretation with geology, geophysical and geochemical information does improve understanding of the geothermal system.
關鍵字(中) ★ 清水地熱
★ 地熱系統
★ 大地電磁法
關鍵字(英) ★ magnetotelluric
★ Chingshui geothermal area.
★ geothermal system
論文目次 Chinese abstract...............................i
English abstract...............................ii
Acknowledgements...............................iv
Table of Contents...............................iv
List of Figures...............................vi
List of Tables...............................iv
Explanation of Symbols...............................iv
Chapter 1 Introduction...............................1
1.1 Conceptual models of geothermal areas..............1
1.2 Chingshui geothermal area...................2
1.2.1 Surface Manifestation...................2
1.2.2 Previous Studies in CGA...................2
1.3 Geological and geothermal background of the CGA...3
1.4 Thermal Structure in Taiwan...................4
1.4 This thesis...................5
Chapter 2 Magnetotelluric Method...................12
2.1 Magnetotellurics...................12
2.2 Basic principal of MT...................13
2.3 Electrical properties of rock...................16
2.4 MT impedance over a two dimensional earth.........18
2.5 Dimensionality and distortion...................20
2.5.1 Rotation and decomposition methods...............21
2.5.2 The MT phase tensor...................22
2.6 Static shifts...................23
Chapter 3 Magnetotelluric Data Processing................28
3.1 Magnetotelluric data collection...................28
3.2 Magnetotelluric time series analysis..............29
3.3 Dimensionality and distortion...................29
3.3.1 Phase tensor analysis...................30
3.3.2 Phase tensor with CGA...................31
3.4 MT sounding curves and pseudo-sections...........32
3.5 Static shift correction...........32
Chapter 4 Inversion of MT Data and Sensitivity Tests......42
4.1 Inversion Theory...........42
4.2 Inversion of the CGA MT Data...........44
4.3 Smoothing test...........45
4.4 Sensitivity test...........45
Chapter 5 Interpretation of the CGA Resistivity Model....60
5.1 Interpretation...........60
5.1.1 NW-SE profile...........60
5.1.1 SW-NE profile...........60
5.2 Conceptual models of CGA...........60
Chapter 6 Conclusions, Discussions, and Future Work......65
References...........66
Appendix A MT Data and 2D Inversions Respons...........70
參考文獻 Ander, M.A., Gross, R., Strangway, D.W., 1984. A detailed magnetotelluric - audiomagnetotellurics study of the Jemez Volcanic Zone, New Mexico., J. Geophys. Res., 89, 3335–3353.
Archie, G.E., 1942. The electrical resistivity log as an aid in determining some reservoir characteristics. Trans. AIME., 146, 54–67.
Arnason, K., Karlsdottir, R., Eysteinsson, H., Flovenz, O.G., Gudlaugsson, S.T., 2000. The Resistivity Structure of High-Temperature Geothermal Systems in Iceland, Geothermal Congress, Kyushu-Tohoku, Japan, pp. 923–928.
Berktold, A., 1983. Electromagnetic studies in geothermal regions. Geophys. Surv., 6, 73–200.
Bahr, K., 1988. Interpretation of the magnetotelluric impedance tensor: regional induction and local telluric distortion. Journal of Geophysics., 62, 119–127.
Bibby, H.M., T.G. Caldwell and C. Brown., 2005. Determinable and non-determinable parameters of galvanic distortion in Magnetotellurics. Geophysical Journal International., 163, 915-930.
Caldwell, T.G., Bibby, H.M., Brown, C., 2004. The magnetotelluric phase tensor. Geophysical Journal International., 158, 457–469.
Chen, C.H., 1985. Chemical characteristics of thermal waters in the central range of Taiwan. R.O.C. Chem. Geol., 49, 303–317.
Chen, C.C. and C.S. Chen., 2002. Sanyi-Puli conductivity anomaly in NW Taiwan and its implication for the tectonics of the 1999 Chi-Chi earthquake. Geophysical Research Letters., 29, 1166.
Cheng, W. T. and C. F. Lee., 1977. Bipole-dipole resistivity mapping in the Chingshui geothermal area. Mining & Metallurgy., 21, 2, 88-93.
Chiang, S.C., Lin, J.J., Chang, C.R.Y.,Wu, T.M., 1979. A preliminary study of the Chingshui geothermal area, Ilan Taiwan. Paper presented at Fifth Geothermal Reservoir EngineeringWorkshop, Stanford University, Stanford, CA, pp. 249–254.
Chiang, S. C. and Y. F. Liu, 1983. Application of TDEM method in the Chingshui geothermal area, Ilan, Taiwan. Petrol. Geol. Taiwan., 19, 197-218.
Fan, K.C., Tom Kuo, M.C., Liang, K.F., Lee, C.S., Chiang, S.C., 2005. Interpretation of a well interference test at the Chingshui geothermal field, Taiwan. Geothermichs., 34, 99-118
Gamble, T. D., W. M. Goubau, and J. Clarke, 1979. Magne¬totellurics with a remote magnetic reference. Geophys¬ics, 44, 53-68, doi: 10.1190/1.1440923.
Groom, R.W., Bailey, R.C., 1989. Decomposition of the magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. Journal of Geophysical Research., 94, 1913–1925.
Groom, R.W. and K. Bahr., 1992. Correction for near-surface effects: decomposition of the Magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. Surveys in Geophysics, 13, 341-379
Hsiao, P. T. and S. C. Chiang., 1979. Geology and geothermal system of the Chingshui-Tuchang geothermal area, Ilan, Taiwan. Petrol. Geol. Taiwan., 16, 205-213.
Jiracek, G.R., 1990. Near-surface and topographic distortions in electromagnetic induction. Surveys in Geophysics., 11, 163-203.
Jones, A.G. and Jodicke, H., 1984. Magnetotelluric transfer function estimation improvement by a coherence-based rejection technique, paper presented at 54th Annual International Meeting, Society of Exploration Geophysicists, Atianta, Dec. 2-6
Lee, C.R. and W.T. Cheng., 1986. Preliminary heat flow measurements in Taiwan. Fourth Circum-Pacific Energy and Mineral Resources Conference, Singapore.
Lin, C.H., 2000. Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan. Tectonophysics., 324, 189- 201.
Lin, C.W. andW. H. Lin, 1995. Geologic map and explanatory text of Taiwan, Sanshin. Geologic Map of Taiwan, Scale 1 : 50000, 15.
Lin, C. H. and Y. H. Yeh, 2001: Three-dimensional P- and S-wave velocity structures of the Chingshui-Tuchang geothermal area in northeastern Taiwan. West. Pac. Earth Sci., 1, 73-84.
Lin, C. W. and C. N. Yang, 1999. Structure styles of the slate and schist belts in northeastern Taiwan. Bull. Cent. Geol. Surv., 12, 39-62.
Mao, M.L and Chan, Y.K., 2006. Geothermal Energy Potential in Taiwan. Proceedings, Thirty-First Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California. SGP-TR-179
McNeice, G., Jones, A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics., 66, 158–173.
Oskooi, B., Pedersen, L.B., Smirnov, M., Arnason, K., Eysteinsson, H., Manzella, A., 2005. The deep geothermal structure of the Mid-Atlantic Ridge deduced from MT data in SW Iceland. Phys. Earth Planet. Inter., 150, 183–195.
Parkinson, W.D., 1962. The influence of continents and oceans on geomagnetic variations. The Geophysical Journal of the Royal Astronomical Society, 6, 411-449.
Rodi, W. and R.L. Mackie., 2001. Nonlinear conjugate gradients algorithm for 2D Magnetotelluric inversion. Geophysics, 66, 174-187.
Simpson, F., Bahr, K., 2005. Practical Magnetotellurics. Cambridge University Press, Cambridge, UK 270 pp
Song, T.R.A. and K.F. Ma., 2002. Estimation of thermal structure of a young orogenic belt according to a model of whole-crust thickening: in Byrne, T.B. and C.S. Liu, eds., Geology and Geophysics of an Arc-Continent Collision, Taiwan: Boulder, Colorado, Geological Society of America Special Paper., 358, 121- 136.
Sternberg, B.K., Washburne, J.C., and Pellerin, L., 1988, Correction for the static shift in magnetotellurics using transient electromagnetic soundings, Geophysics., 53, No.11, p.1459-1468.
Su, F.C., 1978. Resistivity survey in the Chingshui prospect, I-lan, Taiwan. Petrol. Geol. Taiwan., 15, 255–264.
Telford, W.M., L.P. Geldart and R.E. Sheriff., 1990. Applied Geophysics, 2nd Edition, Cambridge, Cambridge University Press, 770 p.
Tikhonov, A.N., 1965. Mathematical basis of the theory of magnetotelluric soundings, USSR Comput. Math. Math. Phys,, 5, p.207.
Tikhonov, A.N., and Arsenin, V.Y., 1977. Solutions of ill-posed problems, published by V. H. Winston and Sons.
Tong, L.T., Ouyang, S., Guo, T.R., Lee, C.R., Hu, K.H., Lee, C.L., Wang, C.J., 2008. Insight into the Geothermal Structure in Chingshui, Illan, Taiwan., Terr.Atmos.Ocean. Sci., 19, No.4, 413-424 ., doi:10.3319/TAO.2008.19.4.413 (T)
Torres-Verdin, C. and Bostick, F.X., 1992. Principles of spatial surface electric field filtering in magnetotellurics: Electromagnetic array profiling (EMAP), Geophysics., 57, No.4, p.603-622.
Tseng, C. S., 1978. Geology and geothermal occurrence of the Chingshui and Tuchang districts, Ilan. Petrol. Geol. Taiwan., 15, 11-23.
Unsworth, M.J., 1999. Magnetotellurics, in McGraw-Hill 2000, Yearbook of Science and Technology: McGraw-Hill, New York, 240-242.
Vozoff, K., 1991. The Magnetotellruic Method, Chapter 8, Electromagnetic method in applied geophysics-Applications part A and part B, edit by Corbett, J.D., published by Scociety of Exploration Geophysicists, p.641-711.
Wannamaker, P.E., G.W. Hohmann and S.H. Ward., 1984. Magnetotelluric responses of three-dimensional bodies in layered earths., Geophysics, 49, 1517-1533.
Wannamaker, P.E., G.R. Jiracek, J.A. Stodt, T.G. Caldwell, V.M. Gonzalez, J.D. McKnight and A.D. Porter., 2002. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Southern Alps, inferred from magnetotelluric data. Journal of Geophysical Research, 107, JB000186.
Willett, S.D., D. Fisher, C. Fuller, E.C. Yeh and C.Y. Lu., 2003. Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission track thermochronometry: Geology, 31, 945-948.
Wu, F.T., R. Rau and D. Slazberg., 1997. Taiwan orogeny: thin-skinned or Lithospheric collision: Tectonophysics., 274, 191-220.
Yang, T. F., T. F. Lan, H. F. Lee, C. C. Fu, P. C. Chuang, C. H. Lo, C. H. Chen, C. T. A. Chen, and C. S. Lee, 2005. Gas compositions and helium isotopic ratios of fluid samples around Kuishantao, NE offshore Taiwan and its tectonic implications. Geochem. J., 39, 469-480.
Yu, S.B., L.C. Kuo, R.S. Punongbayan and E.G. Ramos., 1999. GPS observation of crustal deformation in the Taiwan-Luzon region. Geophysical Research Letters., 26, 923-926.
Yu, S. B. and Y. B. Tsai, 1979. Geomagnetic anomalies of the Ilan plain, Taiwan. Petrol. Geol. Taiwan., 16, 19-27.
Yui, T. F., K. K. Liu, and Y. N. Shieh, 1993. Stable isotope systematic of argillite/slate from a deep well in the Chingshui geothermal field, Taiwan. Chem. Geol., 103, 181-191.
指導教授 陳洲生(Chow-Son Chen) 審核日期 2012-6-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明