博碩士論文 996206001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.117.91.67
姓名 魏世聰(Shih-Tsung Wei)  查詢紙本館藏   畢業系所 水文與海洋科學研究所
論文名稱 微波雷達與CCD影像分析於潮間帶地形測量之應用
(The Applications of Microwave Radar and CCD Image Analysis to Topographic Survey in the Intertidal Flat)
相關論文
★ 西北太平洋長期波候變遷之研究★ 近岸海洋波浪對海面粗糙度之影響
★ 濁水溪河口懸浮沉積物輸送之調查研究★ 低掠角微波雷達海面背向散射強度受波浪影響程度之探討
★ 澎湖海域潮流之數值模擬及其發電潛能評估★ 台灣沿海表面風之週期特性
★ The directional spreading of surface wave in the shallow water zone★ Resuspension of bottom sediment on Inner shelf - A case study of North-western coast of Taiwan
★ 平緩海灘表層含水量變化特性研究★ Development of S-band and Coherent-on-Receive Marine Radar for Ocean Surface Wave and Current Measurement
★ 內陸棚及河口混合與擴散特性觀測研究★ 臺灣海峽海洋塑料垃圾的輸運
★ 有限項目的連續水質監測 應用於探討觀新藻礁區水體環境即時變化★ 海岸帶地區海表拖曳係數與海表粗糙度(均方傾度)之相依關係
★ 應用微波雷達監測海流之演算法流程改善★ 微型資料浮標觀測波浪及MSS的比對分析與演算流程的改善
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 海岸地區為大氣、海洋、陸地的交界,受到人為經濟活動與自然活動之交互作用相當密集而複雜,加上氣候變遷引致海水位上升及極端氣候事件增加所導致的海岸侵蝕、淤積、溢淹等海岸災害可能對沿岸居民安全產生嚴重且立即性的威脅,因此為了能提升海岸安全及保護,對於海岸災害、海岸狀況的了解便顯得重要。
參考CoastView Project中建立的許多海岸狀況監測指標(Coast State Indicators,簡稱CSIs),透過指標中適當的參數可以描述海岸狀況及變化的趨勢,其中沉積物體積為描述海岸狀況的一項重要指標,此項指標中的參數包括沙灘寬度、高度、坡度等等,這些參數都可透過灘線之量測而取得,因此灘線位置的量測便顯得重要。
本論文建立了一套可利用微波雷達量測灘線之方法。首先說明雷達回波的原理與機制,並根據微波雷達對海面及陸地之不同的回波特性以標準偏差區分出來,透過雷達影像之決定盲區、雷達強度校正、轉速校正、座標轉換及標準偏差計算得到雷達標準偏差影像,再經過高反差處理、過濾雜訊、邊緣化處理等過程取得由雷達影像量測出之灘線位置。
本研究為證明雷達量測灘線之可行性,利用影像觀測及DGPS-RTK方法量測灘線結果與之比較,首先說明CCD影像正射化的過程,其過程經過鏡頭扭曲的校正、影像正射化、參考點之空間校正,再將正射化後之CCD影像量測出灘線之位置與雷達量測之位置進行比較,其結果相近。DGPS-RTK對灘線進行量測,並將其量測結果與雷達量測之結果進行比較與討論,其結果比雷達與影像的比較結果更為良好。
確認雷達量測灘線的可行性後,將灘線位置結合水位資料取得垂直剖面之潮間帶地形變化。其方法流程為將雷達的標準偏差影像先取垂直沿岸之切線,將此切線上的標準偏差值隨時間排列紀錄,並經過高反差處理、過濾雜訊、Canny邊緣化等過程取得時間上灘線位置變化,代入灘線之水位資料後,做時間的平均得到潮間帶垂直剖面地形變化。
本研究以東北季風及西南季風為例,透過灘線位置的變化討論不同季風情況下永安漁港南方沙灘受到突堤效應之影響結果,並根據結果討論岸線侵蝕或淤積的狀況。透過垂直剖面潮間帶地形的變化情況可以估算潮間帶地形之砂的變化量,將估算之砂的變化量與輸砂通量公式比較,結果位於同一值級。
摘要(英) Coastal zone is the intersection among atmosphere, sea and land, where the processes involved are complex and intense owing to the interactions of human activities and nature. Due to the global climate change and sea level rise, and the occurrence frequency of extreme weather events exhibits an increasing trend, and therefore enhance the coastal hazard such as coastline erosion, coastal inundation and coastal ecosystem degradation. These hazards bring direct impacts to the coastal residents. In order to increase coastal safety, it is important to realize coastal situation.
According to the CoastView Project, the coastal situation can be represented by the coast state indicators (CSIs) which are a reduced set of parameters that can simply, adequately and quantitatively describe the dynamic-state and evolutionary trends of a coastal system. For example, the beach volume, which is one of the CSIs, can be described by the variables of beach width, beach height, beach slope etc., and these variables can be obtained by estimating the waterline position. The detecting of the waterline position is of an important task regarding to the coastal management.
In this study, we proposed a new method to detect the waterline position using microwave radar. According to the principle and mechanism of the radar backscattering mechanisms, we distinguished the area of beaches and seas according to the corresponding temporal variation of the radar backscatter strength. After the processes of radar signals through radar intensity correction, spatial geometric correction, coordinate transformation and the standard deviation of radar backscatter intensity, we can obtain the waterline position by image processing methods, i.e. the high-contrast-edge method and the filter noise process.
In order to assess the feasibility of present method, we compare the results of waterline position with CCD image method and the actual DGPS-RTK survey. After the process of lens distortion correction and orthographic projection, the waterline estimation results of the CCD orthoimages agree with the results of radar method. The comparison of waterline estimation using DGPS-RTK survey shows good consistency with our method.
Furthermore, the topographic vertical profiles of the intertidal flat are obtained by combining the waterline position and the water level information. Using the chronological record by high-contrast-edge treatment, filtering noise process, we can obtain the change of waterline position with time, and obtain the time averaged topographic vertical profile of the intertidal flat by combining with water level information. Finally we use DGPS RTK to measure the topography of intertidal flat to confirm the accuracy that the radar estimated.
In this study during the strong winter northeast monsoon and summer southwest monsoon events, we estimate the change of topography at the south intertidal flat of Yong-An fishery port, and discuss the coastal erosion under the groin effect.
關鍵字(中) ★ 岸基微波雷達
★ 灘線
★ 潮間帶地形
關鍵字(英) ★ Microwave radar
★ intertidal flat
★ waterline
論文目次 中文摘要 I
ABSTRACT II
誌謝 IV
目錄 V
圖目錄 VII
表目錄 XI
符號說明 XII
第一章 緒 論 1
1-1 研究動機與目的 1
1-2 論文架構 3
第二章 微波雷達量測灘線之研究 4
2-1 雷達回波基本原理與機制 4
2-2 雷達判別灘線之方法 7
2-3 雷達回波強度之標準偏差影像 9
2-3.1 決定盲區 10
2-3.2 雷達強度校正 12
2-3.3 雷達轉速校正 16
2-3.4 座標轉換 16
2-3.5 標準偏差計算 17
2-4 微波雷達影像量測灘線之方法 19
第三章 CCD影像與雷達影像量測灘線之討論 23
3-1攝影機鏡頭扭曲之校正 ...24
3-1.1 鏡頭扭曲校正之實驗與方法 25
3-1.2 鏡頭扭曲校正之結果 28
3-2 CCD影像正射化 32
3-2.1 影像正射化之方法 33
3-2.2 影像空間之校正實驗與結果 35
3-3 CCD影像、雷達影像及DGPS-RTK量測灘線之比較 39
3-3.1 CCD影像量測灘線之方法 39
3-3.2 CCD影像與雷達影像量測灘線之結果與討論 40
3-3.3 雷達影像與DGPS-RTK量測灘線之結果與討論 48
第四章 雷達量測灘線與潮間帶地形之應用 52
4-1 灘線繪製潮間帶地形之方法 52
4-2 季風實例 58
4-2.1 東北季風實例 58
4-2.2 西南季風實例 62
4-2.3 東北季風實例之砂量變化估算 66
第五章 結論與建議 71
5-1 結論 71
5-2 建議 71
參考文獻 72
參考文獻 [1] 賴民順,「低略角微波雷達海面背向散射強度受波浪影響程度之探討」,國立中央大學,碩士論文,2011年。
[2] 李明靜,黃明志,郭晉安,簡仲和,簡仲璟和劉清松,「應用可轉向影像觀測系統於海岸地形監測之研究」,港灣報導,88期,2011年,2月。
[3] 郭金棟,「海岸保護-海岸環境創造序論」,科技圖書股份有限公司,2004年4月。
[4] 尹彰,周宗仁和翁文凱,「有關海面雜波問題的探討」,第29屆海洋工程研討會,583-588頁,國立成功大學、台灣台南市,2007年11月。
[5] Aarninkhof, S.G.J., J.A. Roelvink, “Argus-based monitoring of intertidal beach morphodynamics,” Proc. of Coastal Sediments Conf., Long Island (NY), USA, pp. 2429– 2444, 1999.
[6] Aarninkhof, S.G.J., I.L. Turner, T.D.T. Dronkers, M. Caljouw, “A video-based technique for mapping intertidal beach bathymetry,” Coastal Engineering, 49 (4), 275–289, 2003.
[7] Barnett, J., “Climate change, insecurity and justice,” In W. N. Adger, J. Paavola, M. J. Mace, & S. Huq (Eds.), Fairness in adaptation to climate change, Cambridge, MA: MIT Press, 2006.
[8] Bass, F., I. Fuks, A. Kalmykov, I. Ostrovsky and A. Rosenberg, “Very high frequency radiowave scattering by a disturbed sea surface Part II: cattering from an actual sea surface”, Antennas and Propagation, IEEE Transactions on, Vol. 16, pp. 560-568, September 1968.
[9] Easterling, D. R., J. L. Evans, P. Ya. Groisman, T. R. Karl, K. E. Kunkel, and P. Ambenje, “Observed variability and trends in extreme climate events: A brief review,” Bull. Amer. Meteor. Soc., 81, 417-425, 2000.
[10] Gommenginger,C.P., N.P. Ward, G.J. Fisher, I.S. Robinson and S.R. Boxall, “Quantitative microwave backscatter measurements from the ocean surface using digital marine radar images”, Journal of Atmospheric and Oceanic Technology, Vol. 17, pp. 665-678, May 2000.
[11] Holland, K. T. et al., “Practical use of video imagery in nearshore oceanographic field studies,” IEEE Oceanic Engineering, 22(1), 81-92, 1997.
[12] Holman, R. A. and J. Stanley, “The history and technical capabilities of Argus,” Coastal Engineering, 54, 477-491, 2007.
[13] Intergovernmental Panel on Climate Change, “IPCC Fourth Assessment Report,” Cambridge University Press, Cambridge, UK, 2007.
[14] Kim, T., D. Shin., Y.R. Lee, “Development of Robust Algorithm for Transformation of a 3D Object Point onto a 2d Image Point for Linear Pushbroom Imagery,” Photogrammetric Engineering & Remote Sensing, Vol. 67. No. 4. April, pp.449-452, 2001.
[15] Komar, P.D., “Environmental controls on littoral sand transport,” 21st International Conf. on Coastal Eng., ASCE, Malaga, Vol. 2 : 1238-1252, 1988.
[16] O’Neill, M.A., I.J. Dowman, “The Generation of Epipolar Synthetic Stereo Mates for SPOT Images Using A DEM,” International Archives of Photogrammertry and Remote Sensing, Kyoto, Japan, 27(B8), 1988.
[17] Parmesan C, G. Yohe, “A globally coherent fingerprint of climate change impacts across natural systems,” Nature, 421:37-42, 2003.
[18] Ulaby, F. T., R.K. Moore and A.K. Fung, Microwave Remote Sensing: Radar Remote Sensing and Surface Scattering and Emission Theory v.2., Addison-Wesley., U.S., 1982.
[19] US Army Corps of Engineers, “Coastal Engineering Manual- Longshore Sediment Transport (Part III- Chapter 3),” US ARMY CORPS of Engineers, Vicksburg, MS, USA, 2002.
[20] Wright, J.W., “Backscattering from capillary waves with application to sea clutter”, Antennas and Propagation, IEEE Transactions on, Vol. 14, pp. 749-754, November 1966.
[21] Wright, J.W., “A new model for sea clutter”, Antennas and Propagation, IEEE Transactions on, Vol. 16, pp. 217-223, March 1968.
指導教授 錢樺(Hwa Chien) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明