博碩士論文 996204013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:30 、訪客IP:3.128.199.88
姓名 陳宥任(You-Ren Chen)  查詢紙本館藏   畢業系所 應用地質研究所
論文名稱 快速滑動塊體滑動面正向應力與超額移動距離
(Relation between the normal stress on slip plane of a rapidly sliding mass and the excessive travel distance)
相關論文
★ 利用GIS進行廣域山區順向坡至逆向坡 之判別與潛勢評估–以北橫地區為例★ 北橫公路復興至巴陵段岩石單壓強度之 初步預估模式
★ 車籠埔斷層北段之地下構造研究★ 以岩體分類探討非構造性控制破壞之 岩坡最陡安全開挖坡度
★ 異向性軟岩邊坡地下水滲流對孔隙水壓分佈影響之探討★ 軟弱沉積岩層滲透異向性之探討
★ 臺地邊緣復發式邊坡滑動之水文地質因素探討-以湖口臺地南緣地滑地為例★ 大型岩崩之潛勢與災害影響範圍之研究
★ 節理岩體滲透係數之先天異向性與應力引致異向性★ 比較集集地震引致紅菜坪地滑及九份二山地滑特性之研究
★ 斷層擴展褶皺之斷層破裂距離與斷層滑移量比值(P/S)力學特性之研究★ 土石流潛勢溪流特性分類
★ 孔隙水壓模式對紅菜坪地滑區穩定性之影響★ 紅菜坪地滑地崩積層-岩盤交界面孔隙水壓變化之監測與分析
★ 沉積岩應力相關之流體特性與沉積盆地之 孔隙水壓異常現象★ 山崩引致之堰塞湖天然壩穩定性之量化分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著隨山崩體積增加,山崩滑移距離愈遠,排除了受控於地形因素後,通常伴隨發生移動距離超過預期(超額移動距離,excessive travel distance)之現象。造成大型山崩超額移動距離甚遠的機制,目前仍是科學界爭論不休的議題。根據文獻資料顯示,超額移動距離與體積呈正相關,藉由蒐集山崩滑移距離與滑移深度資料,顯示兩者間之關係亦呈正相關。經由高速旋剪試驗進行岩石-岩石接觸摩擦試驗與夾泥摩擦試驗,發現氣乾砂岩試體於高速剪動下(1.3 m/s),隨正向應力愈大(0.5MPa-3MPa),尖峰(1.51-0.98)與穩態(1.12-0.42)摩擦係數即愈小,其弱化機制主要由熔融物潤滑,正向應力控制岩石熔融速率,使其在較大之正向應力可以較快產生弱化機制,正向應力控制熔融帶厚度,厚度愈厚穩態摩擦係數愈低,滑動塊體需消耗摩擦能即減少,因此塊體滑移距離增加;夾泥試驗的試驗結果亦顯示隨著正向應力增加,摩擦係數隨之減小(尖峰摩擦係數:0.69-0.35,穩態摩擦係數:0.26-0.04),但試驗結果摩擦係數遠小於岩石-岩石接觸試驗。使用實驗求得摩擦係數,模擬假設山崩滑動情形,引入岩石-岩石接觸試驗摩擦係數顯示正向應力大於1.5MPa將產生超額移動距離,超額移動距離隨正向應力增加而增加。夾泥試驗的摩擦係數皆足以讓山崩產生超額移動距離,但是滑移距離對正向應力的影響較氣乾砂岩不明顯,本研究推論,超額移動距離受山崩塊體體積影響之機制,可能部分受控於滑動面正向應力之大小外,材料特性與含水量情況亦扮演重要腳色。
摘要(英) The run-out of large landslide increased with the increasing landslide volume. Excessive travel distance is usually observed. Researchers have been looking for mechanism of this phenomenon, and that can not completely explain this phenomenon in decades. Based on the historic cases, the excessive travel distances of the landslides are highly related to its thickness (normal stress). This study uses high-velocity rotary apparatus doing a series of shear experiments on dry rocks (sandstone) and wet gouges (bedding-parallel fault gouge), performed under normal stress of 0.5-3 MPa with slip rates of 1.3m/s. The result shows that the peak friction coefficient (sandstone: 1.51-0.98; gouge: 0.69-0.35) and the steady state friction coefficient (sandstone: 0.69-0.35; gouge: 0.26-0.04) decreased when normal stress increased. Simplified cases of simulation show that excessive travel distance increase with normal stress in sandstone and gouge experiments. When normal stress is larger than 1.5MPa, it will generate excessive travel distance in rock experiments. It’s enough to friction coefficient in all gouge experiments for generating excessive travel distance. Normal stress is not significantly affected in gouge experiments. The excessive travel distance is function of the normal stress, materials and water contain.
關鍵字(中) ★ 山崩
★ 山崩厚度
★ 正向應力
★ 高速旋剪試驗
★ 超額移動距離
關鍵字(英) ★ landslide
★ landslide thickness
★ high velocity rotary-shear experiment
★ normal stress
★ excessive travel distance
論文目次 摘 要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
圖 目 錄 viii
表 目 錄 xiv
第一章 緒論 1
1-1研究動機與目的 1
1-2論文內文概述 2
1-3研究架構 3
第二章 文獻回顧 4
2-1大型山崩之遠距滑移現象 4
2-2大型山崩的遠距滑移機制 8
2-3大型山崩滑移速度 11
2-4大型山崩滑動面摩擦特性 13
第三章 研究方法 16
3-1山崩案例蒐集 16
3-2實驗樣本 16
3-3高速旋剪摩擦試驗 20
3-3-1高速旋剪試驗儀 21
3-3-2實驗試體需求與製備方法 22
3-3-3實驗操作流程 25
3-3-4扭力測定儀校正 28
3-4樣本物性試驗、組成成分分析與微觀構造 30
3-4-1物性試驗 31
3-4-2掃描式電子顯微鏡 31
3-4-3雷射粒徑分析儀 33
3-4-5偏光顯微鏡 35
3-4-6旋剪試驗之實驗參數 36
第四章 研究結果 38
4-1大型山崩塊體厚度與超額移動距離 38
4-2砂岩與層間斷層泥物理性質與組成成份分析 41
4-2-1砂岩 41
4-2-2層間斷層泥 41
4-3砂岩高速摩擦試驗過程觀察與剪動過程階段劃分 43
4-4高速旋剪摩擦試驗結果 46
4-4-1岩石-岩石接觸摩擦試驗 46
4-4-2夾泥摩擦試驗 58
4-5岩石試驗與夾泥試驗摩擦係數彙整 70
第五章 綜合討論 74
5-1正向應力對摩擦特性及山崩移動距離之影響 74
5-1-1滑移弱化距離(Dc) 74
5-1-2穩態摩擦係數 77
5-2岩石-岩石接觸摩擦試驗弱化機制與微觀構造 81
5-3滑移速度對於摩擦特性影響 92
第六章 結論與建議 93
6-1結論 93
6-2建議 94
參考文獻 95
附錄一 101
附錄二 102
附錄三 106
附錄四 113
附錄五 116
參考文獻 [1]Legros, F., “The mobility of long-runout landslides”, Engineering Geology, Vol. 63, pp. 301-331, 2002.
[2]Hsü, K. J., “Catastrophic debris streams(Struzstroms) generated by rockfalls”, Bulletin of the Geological Society of America, Vol. 86, pp. 129–140, 1975.
[3]Hungr, O., Evans, S. G., “Entrainment of debris in rock avalanches: an analysis of a long run-out mechanism”, Geological Society of America Bulletin, Vol. 116, pp. 1240–1252, 2004.
[4]Heim, A., “Landslides and Human Lives (Bergsturz and Menchen leben)”, N. Skermer, Translator. Bi-Tech Publishers, Vancouver, 196, 1932.
[5]Corominas, J., “The angle of reach as mobility index for small and large landslide”, Canadian Geotechnical Journal, Vol. 33, pp. 260-271, 1996.
[6]Devoli, F., Blasio, F. V., Elverhøi, A., Høeg, K., “Statistical analysis of landslide events in Central America and their run-out distance”, Geotech Geol Eng, Vol. 27, pp. 23–42, 2009.
[7]Scheidegger, A. E., Physical aspects of natural catastrophes, Elsevier Scientific Publishing Company, Amsterdam-Oxford-New-York, 1973.
[8]Soukhoviskaya, V., Mannga, M., “Martian landslide in Valles Marineris: Wet or dry? ”, Icarus, Vol. 180, pp. 348-352, 2006.
[9]Blasio, F. V. D., Introduction to the Physics of Landslides: Lecture Notes on the Dynaimics of Mass Wasting, Springer, 2011.
[10]Erismann, T. H., “Flowing, rolling, boucing, sliding: Synopsis of Basic Mechanisms”, Acts Mechanics, Vol. 64, pp. 101-110, 1986.
[11]Shreve, R. L., “Leakage and Fluidization in Air-Layer Lubricated Avalanches”, Geological Society of America Bulletin, Vol. 79, pp. 653-658, 1968.
[12]Sassa, K., “Landslide volume – apparent friction relationship in the case of rapid loading on alluvial deposits”, Landslide news, Vol. 6, pp. 16–18, 1992.
[13]Campbell, C. S., Cleary, P. W., Hopkins, M., “Large-scale landslide simulations-global deformation, velocity and basal friction”, Journal of Geophysical Research, Vol. 100, 8267, 1995.
[14]Cruden, D. M., Varnes, D. J., “Landslide type and processes”, Landslide Investigation and Mitigation: Transportation Research Board, US National Research Council, Special report 247, pp. 36-75, 1996.
[15]Hungr, O., Evans, S. G., Bovis, M. J., Hutchinson, J. N., “A review of the Classification of Landslides of the Flow Type”, Environment & Engineering Geoscience, Vol. 7, pp. 221-238, 2001.
[16]Dieterich, J. H., “Modeling of rock friction: 1. Experimental result and constitutive equations”, Journal of Geophysical Research, Vol. 84, pp. 2161–2168, 1979.
[17]Tsutsumi, A., Shimamoto, T., “High-velocity frictional properties of gabbro”, Geophysical Research Letters, Vol. 24, 699, 1997.
[18]Marone, C., “The effect of loading rate on static friction and the rate of fault healing during the earthquake cycle”, Nature, Vol. 391, pp. 69–72, 1998.
[19]Hirose, T., Shimamoto, T., “Growth of molten zone as a mechanism of slip weakening of simulated faults in gabbro during frictional melting”. Journal of Geophysical Research, Vol. 110, B05202, doi:10.1029/2004JB003207, 2005.
[20]Mizoguchi, K., Hirose, T., Shimamoto, T., Fukuyama, E., “Reconstruction of seismic faulting by high-velocity friction experiments: an example of the 1995 Kobe earthquake,” Geophysical Research Letters, Vol. 34, L01308, doi:10.1029/2006GL027931, 2007.
[21]Miyamoto, Y., Shimamoto, T., Togo, T., Dong, J. J., Lee, C. T., “Dynamic weakening of bedding-parallel fault gouge as a possible mechanism for catastrophic Tsaoling landslide induced by 1999 Chi-Chi earthquake”, Proceedings of The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 398–401, 2009.
[22]Yano, K., Shimamoto, T., Oohashi, K., Dong, J. J., Lee, C. T., “Ultra-low friction of shale and clayey fault gouge at high velocities: implication for Jiufengershan landslide induced by 1999 Chi-Chi earthquake”, Proceedings of The Next Generation of Research on Earthquake-induced Landslides: An International Conference in Commemoration of 10th Anniversary of the Chi-Chi Earthquake, pp. 401–406, 2009.
[23]Ferri, F., Di Toro, G., Hirose, T., Shimamoto, T., “Evidence of thermal pressurization in high-velocity friction experiments on smectite-rich gouges”, Terra Nova, Vol. 22, pp. 347-353, 2010.
[24]Brantut, N., Schubnel, A., Rouzaud, J.-N., Brunet, F., Shimamoto, T., “High-velocity frictional properties of a clay-bearing fault gouge and implications for earthquake mechanics”, Journal of Geophysical Research, Vol. 113, B10401, dio:10.1029/2007JB005551, 2008.
[25]Kitajima, H., Chester, J. S., Chester, F. M., Shimamoto, T., “High‐speed friction of disaggregated ultracataclasite in rotary shear: Characterization of frictional heating, mechanical behavior, and microstructure evolution”, Journal of Geophysical Research, Vol. 115, B08408, dio:10.1029/2009JB007038, 2010.
[26]Oohashi, K., Hirose,T., Shimamoto,T., “Shear-induced graphitization of carbonaceous materials during seismic fault motion : Experiments and possible implications for fault mechanics”, Journal of Structural Geology, Vol. 33, pp. 1122-1134, 2011.
[27]Tsutsumi, A., Shimamoto, T., “Frictional properties of monzodiorite and gabbro during seismogenic fault motion”, Geological Society of Japan, Vol. 102, pp. 240-248, 1996.
[28]經濟部水利處,九二一草嶺崩塌地處理報告,民國八十九年。
[29]地質資料整合查詢系統。取自:經濟部中央地質調查所http://gis.moeacgs.gov.tw/gwh/gsb97-1/sys8/index.cfm。
[30]ASTM, “Standard test methods for laboratory determination of water(moisture)content of soil and rock by mass”, ASTM International, D2216-10, 2010.
[31]ASTM, “Standard test methods for specific gravity of soils solids by water pycnometer”, ASTM International, D854-10, 2010.
[32]林怡男,「應力歷史對麓山帶沉積岩孔隙率及滲透率應力相依模式影響之探討」,國立中央大學,碩士論文,民國98年。
[33]張筱佩,「台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵」,國立中央大學,碩士論文,民國100年。
[34]Pettijohn, F. J., Potter, P. E., Siever, R., Sand and sandstone, Springer-Verlag, Berlin, 1987.
[35]Persson, B. N. J., Sliding friction, Springer Berlin, 2000.
[36]Di Toro, G., Hirose, T., Nielsen, S., Shimamoto, T., “Relating high-velocity rock friction experiments to coseismic slip”, Geophysical Monograph Series, Vol. 170, pp. 121-134, 2006.
[37]Niemeijer, A., Di Toro, G., Nielsen, S., Felice, F. D., “Frictional melting of gabbro under extreme experiment conditions of normal stress, acceleration, and sliding velocity ”, Journal of Geophysical Research, Vol. 116, B07404, 2011.
[38]Di Toro, G., Pennacchioni, G., Teza, G., “Can pseudotachylytes be used to infer earthquake sourceparameters? An example of limitations in the studyof exhumed faults”, Tectonophysics, Vol. 402, pp. 3-20, 2005.
[39]Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G., Shimamoto, T., “Natural and experimental evidence of melt lubrication of faults during earthquake”, Science, Vol. 311, 647, 2006.
[40]Erismann, T. H., “Mechanisms of large landslides”, Rock Mechanisms, Vol. 12, pp. 15-46, 1979.
[41]Voight, B., Faust, C., “Frictional heat ans strength loss in sime rapid landslide”, Geotechnique, Vol. 32, pp. 43-54, 1982.
[42]Han, R., Hirose, T., Shimamoto, T., “Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates”, Journal of Geophysical Research, Vol. 115, B03412, 2010.
[43]余威論,「速度-位移相關摩擦率與巨型山崩運動特性」,國立中央大學,碩士論文,民國100年。
[44]Shimamoto, T., Tsutsumi, A., “A new rotary-shear high-speed frictional testing machine:its basic design and scope of research”, Journal of Structural Geology, Vol. 39, pp. 65-78, 1994.
[45]Wen, B., Wang, S., Wang E. and Zhang, J., ”Characteristics of rapid giant landslides in China” , Landslide, Vol. 1, pp. 247-261, 2004.
[46]The Frank Kandslide, 29th April 1903。2008年4月29日,取自http://blogs.agu.org/landslideblog/2008/04/29/the-frank-landslide-29th-april-1903/。
[47]Genevois, R., Ghirotti, M., ”The 1963 Vaiont landslide, Giornale di Geollogia Applicata, Vol. 1, pp. 41–53, 2005.
[48]Ferri, F., Di Toro, G., Hirose, T., Han, R., Noda, H., Shimamoto, T., Smith, S., Pennacchioni, G., “Evolution of the 1963 Vajont landslide (Northern Italy) from low and high velocity friction experiments”, EGU General Assembly, Geophysical Research Abstracts, Vol. 11, EGU2009–8138, 2009.
[49]Shreve, R.L., “Sherman landslide, Alaska”, Science, Vol. 154, pp. 1639–1643, 1966.
指導教授 董家鈞(Jia-Jyun Dong) 審核日期 2012-8-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明