博碩士論文 992209006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.135.208.189
姓名 謝宗富(Zong-Fu Sie)  查詢紙本館藏   畢業系所 天文研究所
論文名稱 海王星外雙星系統與第三天體之重力交互作用
(Gravitational Interaction of TNBs with the third body)
相關論文
★ 土衛六「泰坦」離子球層的化學-動力學模型★ KBOs星體碰撞與生命及行星大氣起源
★ 行星狀星雲形態之多光譜波段觀測★ 木衛一埃歐鈉雲噴流之結構與時間變化
★ 早期太陽系系統中KBOs的形成與碰撞演化★ 彗星2001A2 (LINEAR)的光度觀測
★ SDSS之RR Lyrae候選變星之確認觀測★ 銀河系核心及盤面的隨機恆星形成歷史
★ 宇宙射線中的氦原子核能譜★ 小行星對於地球原始海水的貢獻
★ 行星狀星雲Hα結構之分析★ 在星系團中的相對論性電子和SZ效應
★ 重力透鏡和交互作用星系的資料探勘★ 在疏散星團中尋找系外行星與變星
★ 原恆星吸積盤動態模擬與氣體固態粒子作用初步探討★ 大型EKBO(Quaoar, Ixion, 2004DW)的自轉週期和表面顏色的測量
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 目前在太陽系中許多存在小天體的區域皆存在著雙星系統。而這些雙星系統
其各種性質更能夠提供建構該區域演化過程的限制條件。其中位於古柏帶的海王
星外雙星系統中,特別是屬於傳統型冷群海王星外天體的雙星系統,其成員間相
近的質量比、分布極廣的離心率、較高的大軌道比率及相近的順向與逆向軌道比,
無法僅用現有的形成理論來解釋它們的存在。而目前針對它們的演化至今討論不
多。在此我們探討於海王星外雙星系統形成之後其與海王星外天體彼此之間重力
交互作用過程,並以海王星外雙星系統為例測試雙微行星的碰撞截面積,來解釋
我們的結果。我們的結果顯示即便於高速( )的環境下雙微行星的碰
撞截面積仍舊比單獨兩顆微行星碰撞截面積來得高,並且碰撞截面積與雙星的軌
道半長軸具有正相關的關係。另外我們也發現高離心率( )、半長軸較大
( )的海王星外雙星系統的存活率偏低,即使存活其軌道參數也易受海王
星外天體的重力影響;低離心率( )、半長軸較小( )的海王星雙
星系統則反之。根據我們的結果,我們認為低離心率、半長軸較小的海王星外雙
星系統其演化過程可能以潮汐圓化過程為主導,而海王星外天體的遭遇事件可能
主導高離心率、半長軸較大的海王星外雙星系統其演化過程。最後,我們建議未
來探討海王星外雙星系統的各項特徵時,應該針對潮汐作用過程和遭遇事件發生
的頻率進行較細部的研究。
摘要(英) Many binary asteroids distribute at different regions in the solar system. Their
properties provide the restrictive condition to construct evolution model in different
regions. The trans-Neptunian binary (TNB), especially, being classified the dynamical
cold Kuiper belt object, cannot explain their existence by various formation theories
because their near-equal mass ratio, wide distributed eccentricity, higher large orbit
ratio, and near-equal prograde to retrograde orbit ratio. But their evolution is rare
discussed. We study gravitational interaction between TNBs and trans-Neptunian
objects (TNOs) after TNBs formed. We also test the collisional cross section of binary
planetesimals (BPs) to explain our results. Our results show the binary-single
collisional cross section is larger than the single-single collision even if the relative
velocity is high ( ), and the binary-single collisional cross section
depend on the semi-major axis of binary. We also find out that TNBs with the high
eccentric ( ) and larger semi-major axis ( ) are not easy to survival.
Their orbits are changed easily even if they survive after the TNOs close encounter,
vice versa. Follow our results, we think the low eccentric and small orbital TNBs are
dominated by tidal evolution and the evolution of higher eccentric and large orbital
TNBs are dominated by the close encounter with TNOs. In future, about studying the
properties of TNBs, we suggest that tidal evolution and frequency of the close
encounter events should be considered in detail.
關鍵字(中) ★ 海王星外雙星系統
★ 海王星外天體
★ 古柏帶
★ 雙星
★ 古柏帶天體
★ 微行星
★ 碰撞截面積
★ 三體問題
★ 數值模擬
關鍵字(英) ★ numerical simulation
★ three-body probelm
★ binary
★ Kuiper belt
★ trans-Neptunian binary
★ trans-Neptunian object
★ TNO
★ TNB
★ KBO
★ planetesimal
★ collisional cross section
論文目次 中文摘要......................................................................................................................... i
英文摘要........................................................................................................................ ii
目錄............................................................................................................................... iii
圖目錄............................................................................................................................ v
表目錄.......................................................................................................................... vii
一、緒論 ..................................................................................................................... 1
1.1 太陽系內的小行星與海王星外天體 ............................................................ 1
1.2 海王星外天體的分類 .................................................................................... 3
1.2.1 傳統型海王星外天體 ......................................................................... 3
1.2.2 共振型海王星外天體 ......................................................................... 4
1.2.3 散射型海王星外天體 ......................................................................... 4
1.3 太陽系的雙星系統 ........................................................................................ 5
1.3.1 希爾半徑(Hill Radius) .......................................................................... 5
1.3.2 雙小行星系統的比較 ......................................................................... 6
1.3.2.1 近地小行星雙星系統 .............................................................. 6
1.3.2.2 主帶小行星雙星系統 .............................................................. 6
1.3.2.3 海王星外雙星系統 .................................................................. 7
1.3.3 雙星系統的形成理論 ......................................................................... 9
1.4 海王星外雙星系統的形成理論 .................................................................. 10
1.4.1 捕獲說(mutual capture) .................................................................... 10
1.4.2 撞擊說(impact collision) .................................................................... 10
1.4.3 混成說(hybrid) ................................................................................... 11
1.4.4 自轉分裂說(rotational fission) .......................................................... 12
1.4.5 重力塌縮說(gravitational collapse) ................................................... 12
1.5 海王星外雙星系統的演化 .......................................................................... 13
二、重力交互作用過程之模擬 ......................................................................... 14
2.1 定義與符號 .................................................................................................. 14
2.2 數值模擬方法 .............................................................................................. 15
2.2.1 遭遇事件 ........................................................................................... 15
2.2.2 動力學模型 ....................................................................................... 15
2.2.3 數值積分方法 ................................................................................... 16
2.3 初始條件 ...................................................................................................... 18
2.3.1 雙星系統的物理性質與軌道性質 ................................................... 18
2.2.2 外來天體的物理性質 ....................................................................... 18
2.3.3 外來天體的撞擊參數 ....................................................................... 20
2.3.4 外來天體的相對速度 ....................................................................... 21
2.4 遭遇事件的可能結果 .................................................................................. 22
2.4.1 軌道參數 ........................................................................................... 22
2.4.2 判定軌道類型 ................................................................................... 23
2.5 雙星系統的碰撞截面積 .............................................................................. 30
2.5.1 理論預測 ........................................................................................... 30
2.5.2 數值模擬與初始條件 ....................................................................... 32
2.5.3 截面積的計算與誤差估計 ............................................................... 32
三、結果與討論 ..................................................................................................... 33
3.1 碰撞軌道的海王星外雙星系統 .................................................................. 33
3.1.1 碰撞軌道的比率 ............................................................................... 33
3.1.2 雙微行星的碰撞截面積 ................................................................... 34
3.2 不同初始條件下海王星外雙星系統的生存率 .......................................... 37
3.2.1 不同相對速度下的生存率 ............................................................... 37
3.2.2 不同軌道參數的生存率 ................................................................... 38
3.3 海王星外雙星天體的軌道變化 .................................................................. 40
3.3.1 軌道離心率的變化 ........................................................................... 42
3.3.2 軌道半長軸的變化 ........................................................................... 46
3.3.3 軌道傾角的變化 ............................................................................... 50
四、總結 ................................................................................................................... 52
參考資料...................................................................................................................... 53
附表.............................................................................................................................. 56
參考文獻 Agnor C. B., Hamilton D. P., 2006, Nat, 441, 192A
Astakhov S. A., Lee E. A., Farrelly D., 2005, MNRAS., 360, 401
Brown M. E., 2001, ApJ., 121, 2804
Brown M. E. , Suer T. –A., 2007, IAU Circ., 8812
Chapman C. R., Veverka, J., Thomas P. C., Klasasen K., Belton M. J. S., et al., 1995, Nat,
374, 783
Christy J. W., Harrington R. S., 1978, AJ, 83,1005
Connors M., Wiegert P. Veillet C,2011, Nat, 475, 481
Donnison J. R., 2011, MNRAS., 415, 470
Edgeworth K. E., 1949, MNRAS., 109, 600
Fregeau J. M., Cheung P., Portegies Zwart S. F., Rasio, F. A., 2004, MNRAS., 352, 1
Funato Y., Makino J., Hut P., Kokubo E., Kinoshita D., 2004, Nat, 427, 518
Gladman B., Marsden B. G., VanLaerhoven G., 2008, “The Solar System Beyond
Neptune”, 43-57, University of Arizona Press.
Goldreich P., Lithwick Y., Sari R., 2002, Nat, 420, 643
Goldreich P., Lithwick Y., Sari R., 2004, Annu. Rev. Astro Astrophys., 42, 549
Grundy W. M., Benecchi S. D., Rabinowitz D. L., Porter S. B., Wasserman L. H., et al.,
2012, Icarus (in press)
Grundy W. M., Noll K. S., Nimmo F., Roe H. G., Buie M. W., et al., 2011, Icarus, 203, 678
Grundy W. M. , 2012, http://www2.lowell.edu/users/grundy/tnbs/status.html (2012
March)
Heggie, D. C. 1975, MNRAS., 173, 729
Hut P., Bahcall J. N., 1983, ApJ., 268, 319
Kavelaars J.J., Jones R. L., Gladman B. J., Parker J. W., Laerhoven C. V., et al., 2009,
ApJ., 137, 4917
Kenyon S. J., Luu J. X., 1998, ApJ., 115, 2136
Kuiper G. P., 1951, “Astrophysics”, ed. J. A. Hynek, p.357 (McGraw-Hill, New York)
Imke de Pater, Lissauer J. J. , 2010, “Planetary Sciences”, p383-p391, University of
Cambridge Press
Jewitt D., 1999, Annu. Rev. Earth Planet. Sci., 27, 287
Johnston W. R., 2012, http://www.johnstonsarchive.net/index.html (2012 March)
Lee E. A., Astakhov S. A., Farrelly D., 2007, MNRAS., 379, 229
Margot J. L., Noaln M. C., Benner L. A. M., Ostro S. J., Juegens R. F. et al, 2002, Sci,
296, 1445
Naoz S., Perets H. B., Ragozzine D., 2010, ApJ., 719, 1775
Nesvorn’y D., Youdin A. N., Richardson D. C., 2010, ApJ., 140, 785
Nesvorn’y D., Vokrouhlick’y D., Bottke W. F., Noll K. S., Levison H. F., 2011, ApJ., 141,
159
Noll K. S., Benecchi S. D., Grundy W. M., 2009a , IAU Circ., 9040
Noll K. S., Grundy W. M., Chiang E. I., Margot J. L., Kern S. D., 2008a, “The Solar
System Beyond Neptune”, 345-363, University of Arizona Press.
Noll K. S., Grundy W. M., Benecchi S. D., Levison H. F., 2009b , IAU Circ., 9075
Noll K. S., Grundy W. M., Benecchi S. D., Levison H. F., 2009c , IAU Circ., 9076
Noll K. S., Grundy W. M., Benecchi S. D., Levison H. F., Barker E. A., Levison H.F.,
2009d , IAU Circ., 9046
Noll K. S., Grundy W. M., Kern S. D., Levison H. F., Stephens D. C., 2008b , IAU Circ.,
8925
Noll K. S., Grundy W. M., Levison H. F., Stephens D. C., 2006a , IAU Circ., 8689
Noll K. S., Grundy W. M., Levison H. F., Stephens D. C., 2006b , IAU Circ., 8756
Noll K. S., Grundy W. M., Levison H. F., Stephens D. C., 2007a , IAU Circ., 8814
Noll K. S., Grundy W. M., Levison H. F., Stephens D. C., 2007b , IAU Circ., 8815
Noll K. S., Grundy W. M., Levison H. F., Stephens D. C., 2007c , IAU Circ., 8816
Noll K. S., Grundy W. M., Levison H. F., Stephens D. C., 2007d , IAU Circ., 8866
Noll K. S., Grundy W. M., Levison H. F., Barker E. A., 2008c, IAU Circ., 8922
Noll K. S., Grundy W. M., Stephens D. C., Levison H. F., Kern S. D. 2008d, Icarus,
194,758
Ortiz J. L., Thirouin A., Campo Bagatin A., Duffard R., Licandro J., 2012, MNRAS., 419,
2315
Paolicchi P., Burns J.A., Weidenschilling S. J., 2002, , “Asteroids III”, 517-526,
University of Arizona Press.
Parker A. H., Kavelaars J.J., 2010, ApJ., 722, L204
Parker A.H., Kavelaars J.J., Petit J. M., Jones L., Gladman B. Parker J., 2011, ApJ., 743,1
Parker A. H., Kavelaars J.J., 2012, ApJ., 744, 139
Perets H. B., Naoz S., 2009, ApJ., 699, L17
Perets H. B., 2011, ApJ., 727, L3
Ragozzine D., Brown M. E., 2009, AJ, 137, 4766
Richardson D.C., Walsh K.J. , 2006, Annu. Rev. Earth Planet. Sci., 34, 47
Schichting H. E., Sari R., 2008a, ApJ., 673, 1218
Schichting H. E., Sari R., 2008b, ApJ., 686, 741
Sicardy B., Ortiz J. L., Assafin M., Jehin E., Maury A. et al, 2011, Nat, 478, 493
Sheppard S. S., Jewitt D., 2004, ApJ., 127, 3023
Sheppard S. S., Ragozzine D., Trujillo C., 2012 AJ., 143, 58
Stansberry, J. A., Grundy W. M., Margot J. L., Cruikshank D. P., Emery J. P. et al, 2006,
ApJ., 643, 556
Stephens D. C., Noll K. S., Grundy W. M., 2004 IAU Circ., 8289
Stephens D. C., Noll K. S., 2006, ApJ., 131, 1142
Takahashi S., Ip W. H., 2004, PASJ., 56, 1099
Tedesco, E. F., Desert F. X., 2002, ApJ., 123, 2070
Tegler S. C., Romanishin W., 2000, Nat, 407, 979
Veillet C., Doressoundiram A., Shapiro, J., Kavelaars J. J., Morbidelli A., , 2001, IAU
Circ., 7610
Vilenius E., Kiss C., Mommert M., Muller T., Santos-Sanz P., et al, 2012, A&A., 541
A94
Walsh K.J., Richardson D.C., 2006, Icarus, 180, 201
Weidenschilling S. J., 2002, Icarus, 160, 212
Zhang K., Hamilton D. P., 2008, Icarus, 193, 267
指導教授 葉永烜(Wing-Huen Ip) 審核日期 2012-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明