博碩士論文 992204023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:18.222.182.105
姓名 吳家榮(Jia-Rung Wu)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 阿拉伯芥HS29之基因定位及ET參與植物耐熱機轉之探究
(Gene mapping of Arabidopsis thaliana HS29 mutant and the study of ET participating in heat-tolerance mechanism)
相關論文
★ 阿拉伯芥突變種(hit1)之位址定位★ 阿拉伯芥之HIT1蛋白質為酵母菌Vps53p之對應物且能影響植物對高溫及水份逆境之耐受性
★ 阿拉伯芥繫鏈同源蛋白質HIT1對頂端生長之影響及熱耐受基因HIT2之遺傳定位★ 阿拉伯芥hit3遺傳位址定位與HIT1啟動子分析
★ 利用基因功能活化法研究阿拉伯芥乙烯生合成之調控機制★ 阿拉伯芥突變種hit2之位址定位
★ 利用化學遺傳法研究阿拉伯芥 revert to eto1 41 (ret41) 之功能研究★ 阿拉伯芥hit3和et突變種之生理定性及其基因定位
★ 阿拉伯芥囊泡繫鏈因子HIT1在逆境下維持內膜完整性之探討與ret8之基因定位★ 阿拉伯芥中藉由核運輸接受器HIT2/XPO1A進行核質間運輸以促使植物耐受高溫逆境之專一分子的探索研究
★ 阿拉伯芥hs49與78hs突變株之生理定性及其耐熱基因定位★ 阿拉伯芥HIT4為不同於MOM1的新調節方式調控熱誘導染色質重組並在各個植物生長發育轉換時期表現
★ 阿拉伯芥熱誘導性狀突變株R45之基因定位及HSP40參與植物耐熱機轉之探究★ 阿拉伯芥hit4逆轉株r13及r34之基因定位與r34耐熱機轉之探究
★ 蛋白質法尼脂化修飾參與植株耐熱反應★ 探討ETO1-LIKE1(EOL1)及EOL2參與阿拉伯芥幼苗光形態發育之功能
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 植物因無法自由移動來逃避外在的不利環境,而時時刻刻都面臨環境中的各種影響與刺激。高溫對於植物而言是主要的非生物性逆境之一,高溫逆境會影響植物正常的生長發育,嚴重的話會導致植物的死亡,因此植物必需發展出一套有效的機制來因應高溫所帶來的傷害,提高在高溫逆境下的存活率。為了瞭解植物如何抵禦高溫逆境,我們利用正向式遺傳研究法(forward genetic approach)找尋植物中抵禦高溫相關的耐熱基因。本實驗是以化學突變劑甲基磺酸乙酯(ethylmethane sulfonate, EMS)處理阿拉伯芥 (Arabidopsis thaliana)野生型種子,以高溫處理,挑選出兩株對熱不具耐受性的突變株,分別命名為hs 29 (heat sensitive 29)及et (essential for thermotolerance)。實驗結果顯示hs 29突變基因位於阿拉伯芥第三條染色體底部;et突變點則是阿拉伯芥第五條染色體上一個基因內的一個核苷酸由C變成A,導致其所編碼之胺基酸由絲胺酸(serine)變成酪胺酸(tyrosine)。ET為一個含434個胺基酸、帶有細胞核定位訊號(nuclear localization signal sequence, NLS),但功能未知的蛋白質。實驗結果得知ET位於細胞核中由異染色質(heterochromatin)所聚集形成的染色質中心(chromocenter)上,推測當植物遭遇高溫逆境時ET可能是藉由調控某些平時表現被抑制但對植物抵禦高溫必需的基因的活化。
摘要(英) Plants, being immobile and cannot escape from unfavorable environmental conditions, must develop effective protecting mechanisms for survive when exposed to high temperature. To identify the genetic determinants that are essential for plant to cope with heat stress, we have used a forward genetic approach and isolated the et (for essential for thermotolerance) mutant of EMS-mutagenized Arabidopsis. Incubation at 37℃ for 4 days was lethal for et but not for wild-type plants. Gene mapping showed that the mutated locus of et is a single nucleotide change from C to A within the 6th exon of ET gene, leading to a Ser to Tyr substitution at amino acid 227. BLASTp analysis showed that ET is a novel protein whose biological function has never been characterized. Nevertheless, a typical nuclear localization sequence (NLS) was identified, and fluorescent tagged ET was subnuclearly localized to chromocenters. Chromocenters are compact region of chromosome rich in genes under control of transcriptional gene silencing (TGS). Furthermore, we found that heat can mediate chromocenter decondensation and TGS release in wild-type but not in et mutant. Therefore, we conclude that ET may be involved in the epigenetic regulation which is essential for theromotolerance of plants.
關鍵字(中) ★ 耐熱基因
★ 阿拉伯芥
關鍵字(英) ★ heat-tolerance mechanism
★ arabidospis
★ gene mapping
論文目次 中文摘要……………………………………………………………………………….I
英文摘要…………………………………………………………………………….. II
致謝……………………………………………………………………………..…….III
總目錄………………………………………………………………………………...IV
圖表目錄……………………………………………………………………………...VI
緒論……………………………………………………………………………………1
材料及方法……………………………………………………………………………5
1. 突變種之位置定位……………………………………………………………..5
2. 突變種顯隱性之鑑定…………………………………………………………10
3. 含ET及et基因之載體構築…………………………………………………11
4. ET在植物原生質體中表現…………………………………………………...16
5. DAPI(4’’,6-diamidino-2-phenylindole)染色……………………………..19
6. 螢光原位雜合(fluorescent in situ hybridization, FISH)……........19
7. 及時定量聚合酶鏈鎖反應(quantitative real time polymerase chain reaction, qRT PCR)............................................................................................23
8. 互交試驗(reciprocal cross test)………………………………………..24
9. 基因型之鑑定(genotyping)………………………………………………….25
三、實驗結果
1. 突變種之表現型……………………………………………………………....27
2. 突變種顯、隱性突變鑑定..............................................................................27
3. 突變種突變點之定位......................................................................................27
4. ET胺基酸序列分析.........................................................................................28
5. ET的T-DNA品系測試.....................................................................................28
6. ET與et於細胞中之表現位置.......................................................................29
7. 熱誘導染色質中心(chromocenter)結構變化..............................................30
8. 熱誘導TGS之減緩……………………………………………………………31
9. HSP在et突變株中的表現情況……………………………………………...32
10. 與ET交互作用之因子………………………………………………………32
四、討論
1. hs29突變株分析及突變基因定位之結果…………………………………...34
2. 植物面對高溫逆境時細胞內所產生之反應………………………………....34
3. 染色質中心所扮演之角色……………………………………………………34
4. TGS減緩及染色質中心結構改變的分子機制……………………………….37
5. 與ET相關之因子……………………………………………………………..38
6. 熱誘導表現的熱休克蛋白在et突變株中的表現量………………………..39
7. ET可能參與在其它功能……………………………………………………...39
8. ET為獨立演化存在於植物中………………………………………………...40
9. 總結…………………………………………………………………………….40
五、參考文獻……………………………………………………………………......41
圖表目錄
圖一、突變種的表現型……………………………………………………………..46
圖二、突變株染色體上各分子標記之交換率……………………………………..47
圖三、hs29突變株基因定位之結果……………………………………………….48
圖四、ET演化樹分析……………………………………………………………….49
圖五、ET於細胞中表現位置……………………………………………………….50
圖六、熱誘導染色質中心結構變化………………………………………………..51
圖七、熱誘導染色質中心結構變化比例上之統計………………………………..52
圖八、qPCR分析染色質中心區域上基因之表現………………………………….54
圖九、熱休克蛋白基因表現………………………………………………………..55
圖十、胺基酸序列比對……………………………………………………………..57
圖十一、ET與CENH3在細胞中表現之位置……………………………………….58
圖十二、野生型植株與et突變株熱處理前後根部DAPI染色…………………..59
圖十三、熱休克處理後回復(recovery)期間染色質中心結構型態之觀察……..61
圖十四、預測與ET有交互作用之蛋白……………………………………………62
圖十五、ET與HDT4在細胞中表現之位置………………………………………63
圖十六、Bimolecular fluorescence complementation (BiFC)測試…………………64
圖十七、ET會影響HDT4在高溫處理後細胞內分佈位置………………………...65
圖十八、野生型植株之ET與突變株之et在高溫處理前後表現位置型態
的改變………………………………………………………………………………..66
圖十九、ET及et基因之載體構築所用之載體………………………………......67
表一、突變種顯隱性之鑑定………………………………………………………..68
表二、突變株與染色體間之分子標記……………………………………………..69
表三、突變株定位之分子標記……………………………………………………..70
表四、T-DNA insertion line genotyping分析結果…………………………...71
表五、互交試驗(reciprocal cross test)結果…………………………………71
表六、ET及et之cDNA片段以PCR方式放大所用之引子……………………….72
表七、基因型鑑定所用之引子……………………………………………………..72
表八、ET胺基酸序列在阿拉伯芥與其它物種間之一致度(identity)及相似度(similarity) …………………………………………………………………………...73
表九、預測與ET有交互作用之蛋白………………………………………………74
附錄一、et核苷酸定序結果……….......................................................................75
附錄二、ET基因結構與突變點所在位置………………………………………….76
附錄三、ET基因功能上游序列之特性分析……………………………………….77
參考文獻 Bartee L., Malagnac F., Bender J. (2001) Arabidopsis cmt3 chromomethylase mutations block non-CG methylation and silencing of an endogenous gene. Genes Dev. 15: 1753–1758.
Chang W. L. (2011) Identification, characterization and gene mapping of arabidopsis thaliana hit3 and et mutants. Master Thesis, Grauduate school of Life Science, National Central University.
Exner V., Hennig L. (2008) Chromatin rearrangements in development. Curr. Opin. Plant Biol. 11: 64-69.
Ferrando A., Koncz-Kalman Z., Farras R., Tiburcio A., Schell J., Koncz C. (2001) Detection of in vivo protein interactions between snf-1-related kinase subunits with intro-tagged epitope-labelling in plants cells. Nucleic Acids Res. 29: 3685-3693.
Finnegan E.F., Genger R.K., Peacock W.J., Dennis E.S. (1998) DNA methylation in plants. Annu. Rev. Plant Physiol. Mol. Biol. 49: 223-247.
Finnegan E.J., Kovac K.A. (2000) Plant DNA methyltransferases. Plant Mol. Biol. 43: 189–201.
Fransz P., De Jong J.H., Lysak M., Castiglione M.R., Schubert I. (2002) Interphase chromosomes in Arabidopsis are organised as well-defined chromocenters from which euchromatin loops emanate. Proc. Natl Acad. Sci. USA 99: 14584-14589.
Fransz P., de Jong H. (2011) From nucleosome to chromosome: a dynamic organization of genetic information. Plant J. 66: 4-17.
Ito H., Gaubert H., Bucher E., Mirouze M., Vaillant I., Paszkowski J. (2011) An siRNA pathway prevents transgenerational retrotransposition in plants subjected to stress. Nature 472: 115-118.
Jander G. , Norris S.R., Rounsley S.D., Bush D.F., Levin I.M., Last R. L. (2002). Arabidopsis map-based cloning in the post-genome Era. Plant Physiol. 129: 440-450.
Kotak S., Larkindale J., Lee U., von Koskull-Döring P., Vierling E., Scharf K.D. (2007) Complex of the heat stress response in plants. Plant Biol. 10: 310-316.
Lang-Mladek C., Popova O., Kiok K., Berlinger M., Rakic B., Aufsatz W., Jonak C., Hauser M.T. Luschnig, C. (2010) Transgenerational inheritance and resetting of stress-induced loss of epigenetic gene silencing in Arabidopsis. Mol. Plant
3: 594–602.
Lindroth A.M., Cao X., Jackson J.P., Zilberman D., McCallum C.M., Henikoff S., Jacobsen S.E. (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292: 2077–2080.
Lippman Z., May B., Yordan C., Singer T., Martienssen R. (2003) Distinct mechanisms determine transposon inheritance and methylation via small interfering RNA and histone modification. PLoS Biol. 1: 420-428.
Martienssen R.A., Colot V. (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293: 1070-1074.
Mathieu O., Jasencakova Z., Vaillant I., Gendrel A.V., Colot V., Schubert I., Tourmente, S. (2003) Changes in 5S rDNA chromatin organization and transcription during heterochromatin establishment in Arabidopsis. Plant Cell 15: 2929–2939.
May B.P., Lippman Z.B., Fang Y., Spector D.L., Martienssen R.A. (2005) Differential regulation of strand-specific transcripts from Arabidopsis centromeric satellite repeats. PLoS Genet. 1: 705-714.
Pecinka A., Dinh H.Q., Baubec T., Rosa M., Lettner N., Scheid O.M. (2010) Epigenetic regulation of repetitive elements is attenuated by prolonged heat stress in Arabidopsis. Plant Cell 22: 3118–3129.
Probst A.V., Fransz P.F., Paszkowski J., Scheid O.M. (2003) Two means of transcriptional reactivation within heterochromatin. Plant J. 33: 743–749.
Ronemus M.J, Galbiati M., Ticknor C., Chen J., Dellaporta S.L. (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273: 654-657.
Scheid O.M., Probst A.V., Afsar K., Paszkowski J. (2002) Two regulatory levels of transcriptional gene silencing in Arabidopsis. Proc. Natl Acad. Sci. USA 99: 13659-13662.
Soppe W.J.J., Jasencakova Z., Houben A ., Kakutani T., Meister A., Huang M.S., Jacobsen S.E., Schubert I., Fransz P.F. (2002) DNA methylation controls histone H3 lysine 9 methylation and heterochromatin assembly in Arabidopsis. EMBO J. 21: 6549-6559.
Steimer A., Amedeo P., Afsar K., Fransz P., Mittelsten Scheid O., Paszkowski J. (2000) Endogenous targets of transcriptional gene silencing in Arabidopsis. Plant Cell 12: 1165–1178.
Sung D.Y., Kaplan F., Lee K.J., Guy C.L. (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8: 179-187.
Tessadori F., Chupeau M.C., Chupeau Y., Knip M., Germann S., van Driel R., Fransz P., Gaudin V. (2007a) Large-scale dissociation and sequential reassembly of pericentric heterochromatin in dedifferentiated Arabidopsis cells. J. Cell Sci. 120: 1200–1208.
Tessadori F., Schulkes R.K., van Driel R., Fransz P. (2007b) Light-regulated large-scale reorganization of chromatin during the floral transition in Arabidopsis. Plant J. 50: 848–857.
Tittel-Elmer M., Bucher E., Broger L., Mathieu O., Paszkowski J., Vaillant I. (2010) Stress-induced activation of heterochromatic transcription. PLoS Genet. 6: 1-11.
Tompa R., McCallum C.M., Delrow J., Henikoff J.G., van Steensel B., Henikoff S. (2002) Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr. Biol. 12: 65–68.
Tran R.K., Zilberman D., de Bustos C., Ditt R.F., Henikoff J.G., Lindroth A.M., Delrow J., Boyle T., Kwong S., Bryson T.D., Jacobsen S.E., Henikoff S. (2005) Chromatin and siRNA pathways cooperate to maintain DNA methylation of small transposable elements in Arabidopsis. Genome Biol. 6: R90.
Vaillant I., Schubert I., Tourmente S., Mathieu O. (2006) MOM1 mediates DNA-methylation-independent silencing of repetitive sequences in Arabidopsis. EMBO Rep. 7: 1273-1278.
van Zanten M.V., Tessadori F., McLoughlin F., Smith R., Millenaar F.F., van Driel R., Voesenek L.A., Peeters A., Fransz P.F. (2010a) Photoreceptors CRYTOCHROME 2 and Phytochrome B control chromatin compaction in Arabidopsis thaliana. Plant Physiol. 154: 1686–1696.
Vongs A., Kakutani T., Martienssen R.A., Richards E.J. (1993) Arabidopsis thaliana DNA methylation mutants. Science 260: 1926–1928.
Wahid A., Gelani S., Ashraf M., Foolad M.R. (2007) Heat tolerance in plants: an overview. Environ. Exp. Bot. 61: 199-233
指導教授 吳少傑(Shaw-Jye Wu) 審核日期 2012-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明