博碩士論文 992203054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.117.216.229
姓名 趙信豪(Sin-Hao Jhao)  查詢紙本館藏   畢業系所 化學學系
論文名稱 鋰電池三元系正極材料之添加劑製備及電池性能探討
(Electrochemical characterizations of organic surface-modified LiNi1/3Co1/3Mn1/3O2 cathode materials for Li-ion batteries)
相關論文
★ 電場誘導有序排列之高導電度複合固態電解質★ 電場誘導聚苯醚碸摻雜複合薄膜之研究
★ 改善鋰離子電池電性之新穎電解液添加劑★ 電場誘導高離子導向之混摻高分子固態電解質
★ 以有機茂金屬觸媒合成sPS/PAMS與sPS/PPMS共聚物及其物性探討★ 以有機茂金屬觸媒合成丙烯-原冰烯之COC共聚物及其物性探討
★ 電致發光電池中電解質的結構與物性探討★ 奈米二氧化鈦-固態複合高分子電解質
★ 交聯型固態高分子電解質★ 高分子固態電解質改進高分子發光二極體之光學特性研究
★ 複合高分子電解質結構與電性之研究★ 奈米粒/管二氧化鈦複合高分子電解質之結構探討
★ 具備電子予體與受體之七環十四烷衍生物的製備及其特性★ 超分子發光二極體相容性、分子運動性與光性之研究
★ 新穎質子交換膜★ 原位聚合有機無機複合發光二極體 之分散性及光性研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 安全性為鋰離子電池中最受注目的議題。先前的研究指出,正極材料在高溫下容易釋氧,且氧會與電解液作用產生燃燒,造成危險性;因此,若有一機制能抓取釋出的氧或阻斷燃燒反應,則可增加鋰離子電池安全性。
  本系統使用自由基捕捉劑巴比妥酸(BTA)的衍生物-1,3DBTA,與雙馬來醯亞胺(BMI)及其衍生物(C4BMI, PMI, Si(MI)3)共聚形成樹枝狀寡聚物(dendrimeric oligomers),應用於三元系正極材料中;其主要目的是想藉由1,3DBTA來抓取正極材料因高溫釋出的氧及阻斷燃燒反應以達到安全目的。
  本研究所合成之添加劑,具有高分子的纏繞特性,可有效且緻密地包覆正極材料,藉由表面形成之鈍化膜穩定正極材料,並避免活性粒子表面的過渡金屬與電解質直接接觸。相對的此披覆正極表面的樹枝狀寡聚物,會導致鋰離子傳輸速率下降與鈍化膜界面阻抗上升。由熱差式掃描分析儀(DSC)可觀察到添加劑能有效地抑制正極材料在高溫時的放熱量;且在循環壽命方面,含o-BMI與o-C4BMI之樣品的表現較好,第50圈電容量保留值分別為95.20%與97.54%。
  本研究證實以自由基捕捉劑對正極材料進行表面修飾能改善鋰離子電池之安全性,同時也增進電池循環壽命能力。相較於一般阻燃劑添加於電解液中,雖然可以提升電解液的耐燃性來增加整體的安全性,但卻大幅度犧牲電池電容量;相比之下,本研究提高正極材料熱穩定性與增進循環壽命能力,但在電性表現上功率密度只略為犧牲。
摘要(英) Safety is the most sought-after property in Lithium battery. This research shows battery safety can be improved with the addition of functional additive to the cathode materials. In this research, barbituric acid (BTA) and its derivatives, 1,3DBTA(1,3-Dimethylbarbituric acid) which are well-known free radicals scavenger are first mixed with different organic copolymer (BMI, C4BMI, Si(MI)3, PMI) to form dendrimeric oligomers before compounded with various cathode materials which included LiCoO2, LiNiO2 and LiNi1/3Co1/3Mn1/3O2. LiCoO2 is the most widely used cathode material in present commercial lithium ion batteries.
SEM measurements confirmed the coating on the electrode materials is highly homogeneous, with part of the additive ingredient attached to PVdF binder. After formation with three repeating cycle, The SEI morphology was found to be smoother than pristine. Nitrogen mapping by EDS shows the dendrimeric additive is homogeneously spread out on the cathode materials surface which indicated the organic additives were adsorbed on the surface of LiNi1/3Co1/3Mn1/3O2. At 0.2C-rate and 6C-rate, the electrochemical performances of cathode containing additives were about 150 mAh/g and 105 mAh/g, respectively. Due to the additive effects, the lithium ion transfer rate are all decreased, and the SEI interface impedance rose. The delay of exothermic temperature and reduction of exothermic reaction heat release by more than 50% as derived from differential scanning thermal analyzer (DSC) suggested these additives effectively inhibits the reaction heat during oxygen release when temperature reached above 250℃ to 320℃. In cycle-life performance, oligomer with o-BMI and o-C4BMI retained 95.20% and 97.54% capacity at 50cycle under 0.2C-rate, but the pristine without any additive modification showed a capacity retention of 87% under the same condition.
Although the additives affect battery’s power density, carefully balancing the component composition, it is found the battery performance and security features can both be enhanced. Compared with other safety technology which uses flame retardants to reduce electrolyte flammability, temperature control is not satisfactory, and the charge capacity usually suffers greatly. In contrast, present approach improves both thermal stability and cycle life without much cost of the charge capacity.
關鍵字(中) ★ 鋰離子電池
★ 添加劑
★ 安全
關鍵字(英) ★ Lithium-ion battery
★ BTA
★ Safety
論文目次 目錄
摘要 I
Abstract II
謝誌 IV
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1-1 前言 1
1-2 鋰離子電池的原理及介紹 3
1-2-1 正極材料 4
1-2-2 負極材料 6
1-3 鋰離子電池目前遭遇的問題 7
1-4 研究動機與目的 9
第二章 文獻回顧 11
2-1 固態電解質界面(SEI) 11
2-1-1 鈍化膜的形成機制 11
2-1-2 鈍化膜的鑑定方法 13
2-1-3 鈍化膜的改善 18
2-2 Li[Ni1/3Mn1/3Co1/3]O2之表面修飾(Surface coating) 26
2-2-1 以ZrO2對Li[Ni1/3Mn1/3Co1/3]O2進行表面修飾 26
2-2-2 以Al2O3對Li[Ni1/3Mn1/3Co1/3]O2進行表面修飾 28
2-2-3 以C對Li[Ni1/3Mn1/3Co1/3]O2進行表面修飾 29
2-2-4 以ZrFx對Li[Ni1/3Mn1/3Co1/3]O2進行表面修飾 31
2-3 Li[Ni1/3Mn1/3Co1/3]O2之摻雜(Doping) 33
2-3-1 以Cr對Li[Ni1/3Mn1/3Co1/3]O2進行摻雜 33
2-3-2 以Mg對Li[Ni1/3Mn1/3Co1/3]O2進行摻雜 35
第三章 實驗及原理技術 38
3-1 實驗藥品、器材與儀器設備 38
3-1-1 實驗藥品 38
3-1-2 實驗器材 39
3-1-3 實驗儀器設備 40
3-2 實驗方法 41
3-2-1 添加劑之製備 41
3-2-2 正極極板之製作 42
3-2-3 鈕扣型電池組裝 43
3-3 材料鑑定分析 44
3-3-1 核磁共振儀(NMR) 44
3-3-2 場發射掃描式電子顯微鏡(FE-SEM) 45
3-3-3 熱差式掃描卡計儀(DSC) 45
3-4 材料電化學特性分析 46
3-4-1 電池測試 46
3-4-2 循環伏安法分析(CV) 47
3-4-3 交流阻抗分析儀(AC Impedance) 49
第四章 結果與討論 51
4-1 材料分析 53
4-1-1 NMR聚合程度分析 53
4-1-2 SEM表面形態分析 57
4-1-3 熱穩定度分析 61
4-2 電化學性質分析 63
4-2-1 第一圈電池效能分析 63
4-2-2 不同C-rate下電池效能分析 65
4-2-3 循環伏安法分析 68
4-2-4 電池交流阻抗分析 71
4-2-5 循環壽命測試 74
第五章 結論與未來展望 76
參考文獻 78
參考文獻 參考文獻
[1] Tarascon, J. M.; Armand, M. "Issues and challenges facing rechargeable lithium batteries" Nature, vol.414, pp.359-367, 2001.
[2] http://auto.sina.com.cn/service/2011-04-13/0812752071.shtml
[3] Ohzuku, T.; Brodd, R. J. "An overview of positive-electrode materials for advanced lithium-ion batteries" Journal of Power Sources, vol.174, pp.449-456, 2007.
[4] Hirano, A.; Kanno, R.; Kawamoto, Y.; Takeda, Y.; Yamaura, K.; Takano, M.; Ohyama, K.; Ohashi, M.; Yamaguchi, Y. "Relationship between non-stoichiometry and physical properties in LiNiO2" Solid State Ionics, vol.78, pp.123-131, 1995.
[5] Yamada, A.; Tanaka, M. "Jahn-Teller structural phase transition around 280K in LiMn2O4" Materials Research Bulletin, vol.30, pp.715-721, 1995.
[6] Zhou, F.; Kang, K.; Maxisch, T.; Ceder, G.; Morgan, D. "The electronic structure and band gap of LiFePO4 and LiMnPO4" Solid State Communications, vol.132, pp.181-186, 2004.
[7] 費定國 "鋰離子電池在電動車市場之展望" 工業材料雜誌, vol.229, pp.141-146, 2006.
[8] Gozu, M.; Świerczek, K.; Molenda, J. "Structural and transport properties of layered Li1+x(Mn1/3Co1/3Ni1/3)1−xO2 oxides prepared by a soft chemistry method" Journal of Power Sources, vol.194, pp.38-44, 2009.
[9] Li, C.; Zhang, H. P.; Fu, L. J.; Liu, H.; Wu, Y. P.; Rahm, E.; Holze, R.; Wu, H. Q. "Cathode materials modified by surface coating for lithium ion batteries" Electrochimica Acta, vol.51, pp.3872-3883, 2006.
[10] Feng, X. M.; Ai, X. P.; Yang, H. X. "A positive-temperature-coefficient electrode with thermal cut-off mechanism for use in rechargeable lithium batteries" Electrochemistry Communications, vol.6, pp.1021-1024, 2004.
[11] Liang, Y.; Han, X.; Zhou, X.; Sun, J.; Zhou, Y. "Significant improved electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 cathode on volumetric energy density and cycling stability at high rate" Electrochemistry Communications, vol.9, pp.965-970, 2007.
[12] Li, J.; Zhang, Z. R.; Guo, X. J.; Yang, Y. "The studies on structural and thermal properties of delithiated LixNi1/3Co1/3Mn1/3O2 (0 < x ≤ 1)as a cathode material in lithium ion batteries" Solid State Ionics, vol.177, pp.1509-1516, 2006.
[13] 李仁傑; 楊長榮 "鋰離子電池安全的設計與維護" 工業材料雜誌, vol.275, pp.40-46, 2009.
[14] Wang, F.-M.; Cheng, H.-M.; Wu, H.-C.; Chu, S.-Y.; Cheng, C.-S.; Yang, C.-R. "Novel SEI formation of maleimide-based additives and its improvement of capability and cyclicability in lithium ion batteries" Electrochimica Acta, vol.54, pp.3344-3351, 2009.
[15] Ado, K.; Tabuchi, M.; Kobayashi, H.; Kageyama, H.; Nakamura, O.; Inaba, Y.; Kanno, R.; Takagi, M.; Takeda, Y. "Preparation of LiFeO2 with Alpha-NaFeO2-Type Structure Using a Mixed-Alkaline Hydrothermal Method" Journal of The Electrochemical Society, vol.144, pp.L177-L180, 1997.
[16] 葉定儒; 陳金銘; 廖世傑 "鋰電池機能性添加劑研究" 工業材料雜誌, vol.290, pp.78-84, 2011.
[17] Bar-Tow, D.; Peled, E.; Burstein, L. "A Study of Highly Oriented Pyrolytic Graphite as a Model for the Graphite Anode in Li-Ion Batteries" Journal of The Electrochemical Society, vol.146, pp.824-832, 1999.
[18] Zhang, S. S.; Xu, K.; Jow, T. R. "EIS study on the formation of solid electrolyte interface in Li-ion battery" Electrochimica Acta, vol.51, pp.1636-1640, 2006.
[19] Li, G.; Li, H.; Mo, Y.; Chen, L.; Huang, X. "Further identification to the SEI film on Ag electrode in lithium batteries by surface enhanced Raman scattering (SERS)" Journal of Power Sources, vol.104, pp.190-194, 2002.
[20] Aurbach, D. "Review of selected electrode–solution interactions which determine the performance of Li and Li ion batteries" Journal of Power Sources, vol.89, pp.206-218, 2000.
[21] Arreaga-Salas, D. E.; Sra, A. K.; Roodenko, K.; Chabal, Y. J.; Hinkle, C. L. "Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries" The Journal of Physical Chemistry C, vol.116, pp.9072-9077, 2012.
[22] Leroy, S.; Martinez, H.; Dedryvère, R.; Lemordant, D.; Gonbeau, D. "Influence of the lithium salt nature over the surface film formation on a graphite electrode in Li-ion batteries: An XPS study" Applied Surface Science, vol.253, pp.4895-4905, 2007.
[23] Lee, Y.-S.; Lee, K.-S.; Sun, Y.-K.; Lee, Y. M.; Kim, D.-W. "Effect of an organic additive on the cycling performance and thermal stability of lithium-ion cells assembled with carbon anode and LiNi1/3Co1/3Mn1/3O2 cathode" Journal of Power Sources, vol.196, pp.6997-7001, 2011.
[24] Choi, J.-A.; Eo, S.-M.; MacFarlane, D. R.; Forsyth, M.; Cha, E.; Kim, D.-W. "Effect of organic additives on the cycling performances of lithium metal polymer cells" Journal of Power Sources, vol.178, pp.832-836, 2008.
[25] Wang, R. L.; Buhrmester, C.; Dahn, J. R. "Calculations of Oxidation Potentials of Redox Shuttle Additives for Li-Ion Cells" Journal of The Electrochemical Society, vol.153, pp.A445-A449, 2006.
[26] Wang, F.-M.; Lo, S.-C.; Cheng, C.-S.; Chen, J.-H.; Hwang, B.-J.; Wu, H.-C. "Self-polymerized membrane derivative of branched additive for internal short protection of high safety lithium ion battery" Journal of Membrane Science, vol.368, pp.165-170, 2011.
[27] Pan, J.-P.; Shiau, G.-Y.; Lin, S.-S.; Chen, K.-M. "Effect of barbituric acid on the self-polymerization reaction of bismaleimides" Journal of Applied Polymer Science, vol.45, pp.103-109, 1992.
[28] Doh, C.-H.; Kim, D.-H.; Kim, H.-S.; Shin, H.-M.; Jeong, Y.-D.; Moon, S.-I.; Jin, B.-S.; Eom, S. W.; Kim, H.-S.; Kim, K.-W.; Oh, D.-H.; Veluchamy, A. "Thermal and electrochemical behaviour of C/LixCoO2 cell during safety test" Journal of Power Sources, vol.175, pp.881-885, 2008.
[29] Tobishima, S.-I.; Takei, K.; Sakurai, Y.; Yamaki, J.-I. "Lithium ion cell safety" Journal of Power Sources, vol.90, pp.188-195, 2000.
[30] Li, D.-C.; Muta, T.; Zhang, L.-Q.; Yoshio, M.; Noguchi, H. "Effect of synthesis method on the electrochemical performance of LiNi1/3Mn1/3Co1/3O2" Journal of Power Sources, vol.132, pp.150-155, 2004.
[31] Kim, G.-H.; Kim, M.-H.; Myung, S.-T.; Sun, Y. K. "Effect of fluorine on Li[Ni1/3Co1/3Mn1/3]O2−zFz as lithium intercalation material" Journal of Power Sources, vol.146, pp.602-605, 2005.
[32] Shaju, K. M.; Subba Rao, G. V.; Chowdari, B. V. R. "Performance of layered Li(Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries" Electrochimica Acta, vol.48, pp.145-151, 2002.
[33] Kim, H.-S.; Kong, M.; Kim, K.; Kim, I.-J.; Gu, H.-B. "Effect of carbon coating on LiNi1/3Mn1/3Co1/3O2 cathode material for lithium secondary batteries" Journal of Power Sources, vol.171, pp.917-921, 2007.
[34] Huang, Y.; Chen, J.; Ni, J.; Zhou, H.; Zhang, X. "A modified ZrO2-coating process to improve electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2" Journal of Power Sources, vol.188, pp.538-545, 2009.
[35] Huang, Y.; Chen, J.; Cheng, F.; Wan, W.; Liu, W.; Zhou, H.; Zhang, X. "A modified Al2O3 coating process to enhance the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2 and its comparison with traditional Al2O3 coating process" Journal of Power Sources, vol.195, pp.8267-8274, 2010.
[36] Lin, B.; Wen, Z.; Han, J.; Wu, X. "Electrochemical properties of carbon-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium-ion batteries" Solid State Ionics, vol.179, pp.1750-1753, 2008.
[37] Lin, B.; Wen, Z.; Gu, Z.; Huang, S. "Morphology and electrochemical performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode material by a slurry spray drying method" Journal of Power Sources, vol.175, pp.564-569, 2008.
[38] Hsu, K.-F.; Tsay, S.-Y.; Hwang, B.-J. "Physical and electrochemical properties of LiFePO4/carbon composite synthesized at various pyrolysis periods" Journal of Power Sources, vol.146, pp.529-533, 2005.
[39] Thackeray, M. M.; Johnson, C. S.; Kim, J. S.; Lauzze, K. C.; Vaughey, J. T.; Dietz, N.; Abraham, D.; Hackney, S. A.; Zeltner, W.; Anderson, M. A. "ZrO2- and Li2ZrO3-stabilized spinel and layered electrodes for lithium batteries" Electrochemistry Communications, vol.5, pp.752-758, 2003.
[40] Lee, H.; Kim, Y.; Hong, Y.-S.; Kim, Y.; Kim, M. G.; Shin, N.-S.; Cho, J. "Structural Characterization of the Surface-Modified LixNi0.9Co0.1O2 Cathode Materials by MPO4 Coating (M = Al, Ce, SrH, and Fe) for Li-Ion Cells" Journal of The Electrochemical Society, vol.153, pp.A781-A786, 2006.
[41] Yun, S. H.; Park, K.-S.; Park, Y. J. "The electrochemical property of ZrFx-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode material" Journal of Power Sources, vol.195, pp.6108-6115, 2010.
[42] Hu, S.-K.; Cheng, G.-H.; Cheng, M.-Y.; Hwang, B.-J.; Santhanam, R. "Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries" Journal of Power Sources, vol.188, pp.564-569, 2009.
[43] Lee, S. M.; Oh, S. H.; Ahn, J. P.; Cho, W. I.; Jang, H. "Electrochemical properties of ZrO2-coated LiNi0.8Co0.2O2 cathode materials" Journal of Power Sources, vol.159, pp.1334-1339, 2006.
[44] Liao, L.; Wang, X.; Luo, X.; Wang, X.; Gamboa, S.; Sebastian, P. J. "Synthesis and electrochemical properties of layered Li[Ni0.333Co0.333Mn0.293Al0.04]O2−zFz cathode materials prepared by the sol–gel method" Journal of Power Sources, vol.160, pp.657-661, 2006.
[45] Jouanneau, S.; Dahn, J. R. "Influence of LiF Additions on Li[NixCo1 - 2xMnx]O2 Materials" Journal of The Electrochemical Society, vol.151, pp.A1749-A1754, 2004.
[46] Myung, S.-T.; Izumi, K.; Komaba, S.; Yashiro, H.; Bang, H. J.; Sun, Y.-K.; Kumagai, N. "Functionality of Oxide Coating for Li[Li0.05Ni0.4Co0.15Mn0.4]O2 as Positive Electrode Materials for Lithium-Ion Secondary Batteries" The Journal of Physical Chemistry C, vol.111, pp.4061-4067, 2007.
[47] Myung, S.-T.; Izumi, K.; Komaba, S.; Sun, Y.-K.; Yashiro, H.; Kumagai, N. "Role of Alumina Coating on Li−Ni−Co−Mn−O Particles as Positive Electrode Material for Lithium-Ion Batteries" Chemistry of Materials, vol.17, pp.3695-3704, 2005.
[48] Guo, J.; Jiao, L. F.; Yuan, H.; Wang, L. Q.; Li, H. X.; Zhang, M.; Wang, Y. M. "Effect of structural and electrochemical properties of different Cr-doped contents of Li[Ni1/3Mn1/3Co1/3]O2" Electrochimica Acta, vol.51, pp.6275-6280, 2006.
[49] Yabuuchi, N.; Ohzuku, T. "Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries" Journal of Power Sources, vol.119–121, pp.171-174, 2003.
[50] Kim, J. H.; Yoon, C. S.; Sun, Y. K. "Structural Characterization of Li[Li0.1Ni0.35Mn0.55]O2 Cathode Material for Lithium Secondary Batteries" Journal of The Electrochemical Society, vol.150, pp.A538-A542, 2003.
[51] Ohzuku, T.; Makimura, Y. "Layered Lithium Insertion Material of LiNi1/2Mn1/2O2 : A Possible Alternative to LiCoO2 for Advanced Lithium-Ion Batteries" Chemistry Letters, vol.30, pp.744-745, 2001.
[52] Kim, J.-M.; Chung, H.-T. "The first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V" Electrochimica Acta, vol.49, pp.937-944, 2004.
[53] Matsuda, K.; Taniguchi, I. "Particle Properties of LiMn2O4 Fabricated by Ultrasonic Spray Pyrolysis Method" KAGAKU KOGAKU RONBUNSHU, vol.29, pp.232-237, 2003.
[54] Matsuda, K.; Taniguchi, I. "Relationship between the electrochemical and particle properties of LiMn2O4 prepared by ultrasonic spray pyrolysis" Journal of Power Sources, vol.132, pp.156-160, 2004.
[55] Xu, X. G.; Li, C.; Li, J. X.; Kolb, U.; Wu, F.; Chen, G. "Electronic Structure of Li(Co, Mg)O2 Studied by Electron Energy-Loss Spectrometry and First-Principles Calculation†" The Journal of Physical Chemistry B, vol.107, pp.11648-11651, 2003.
[56] Chang, C.-C.; Kim, J. Y.; Kumta, P. N. "Divalent cation incorporated Li(1+x)MMgxO2(1+x) (M=Ni0.75Co0.25): viable cathode materials for rechargeable lithium-ion batteries" Journal of Power Sources, vol.89, pp.56-63, 2000.
[57] Pouillerie, C.; Croguennec, L.; Biensan, P.; Willmann, P.; Delmas, C. "Synthesis and Characterization of New LiNi1 - yMgyO2 Positive Electrode Materials for Lithium-Ion Batteries" Journal of The Electrochemical Society, vol.147, pp.2061-2069, 2000.
[58] Kim, G.-H.; Myung, S.-T.; Kim, H.-S.; Sun, Y.-K. "Synthesis of spherical Li[Ni(1/3−z)Co(1/3−z)Mn(1/3−z)Mgz]O2 as positive electrode material for lithium-ion battery" Electrochimica Acta, vol.51, pp.2447-2453, 2006.
[59] Tukamoto, H.; West, A. R. "Electronic Conductivity of LiCoO2 and Its Enhancement by Magnesium Doping" Journal of The Electrochemical Society, vol.144, pp.3164-3168, 1997.
[60] Takahashi, M.; Tobishima, S.-I.; Takei, K.; Sakurai, Y. "Reaction behavior of LiFePO4 as a cathode material for rechargeable lithium batteries" Solid State Ionics, vol.148, pp.283-289, 2002.
[61] Wu, S.-H.; Shiu, J.-J.; Lin, J.-Y. "Effects of Fe2P and Li3PO4 additives on the cycling performance of LiFePO4/C composite cathode materials" Journal of Power Sources, vol.196, pp.6676-6681, 2011.
[62] 鄭錦淑 "鋰電池材料熱分析研究" 工業材料雜誌, vol.264, pp.118-122, 2008.
[63] 黨苓之 "高性能鋰離子電池的製備" 國立中央大學化學系碩士論文, pp.64-67, 2010.
[64] 孫世勇 "應用核磁共振技術觀察雙馬來亞醯胺和巴比妥酸在甲基吡咯烷酮溶劑下聚合反應的反應機制與動力學行為" 中原大學化學系碩士論文, 2008.
指導教授 諸柏仁(Po-jen Chu) 審核日期 2012-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明