博碩士論文 942406022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:52.14.221.113
姓名 王宣文(Hsuan-Wen Wang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以濺鍍法製作矽異質接面太陽能電池之研究:矽薄膜特性對元件效率的影響
(Research of High Efficiency Silicon Heterojunction Solar Cell Fabricated by Sputtering:Impact of Silicon Thin Film Properties on Device Performance)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 濺鍍為一種廣泛應用於薄膜成長,且具有許多優點的技術。然而對於矽薄膜的成長而言,濺鍍製程中的離子轟擊效應會使薄膜產生微孔洞,造成電性上的缺陷。因此濺鍍所製作的薄膜易形成矽氫多鍵結構與不易摻雜的特性。所以使用濺鍍法製作太陽能電池的難度較高,未能普及。
本研究使用磁控濺鍍來成長含氫矽薄膜並應用此方法製作矽異質接面太陽能電池。研究發現對基板施加正偏壓下,可有效使矽氫多鍵轉變為矽氫單鍵之穩定型態,且可藉由調變濺鍍功率與氣壓等參數來提升薄膜的摻雜效率。此外再以提升摻雜的P型矽薄膜成長於N型矽晶片表面來製作異質接面太陽能電池。於選擇適當的薄膜製程條件下,可在平面型(未表面粗糙化)的矽晶片獲得10%轉換效率之異質接面太陽能電池。
摘要(英) Sputtering is a popular technique with many advantages for thin film deposition. However, as for the preparation of hydrogenated silicon thin film, ion bombardment accompanies during sputtering may generate microstructures (voids, columnar structures) within the film, which leads to unfavorable silicon dihydride bodings and electrical defects. Therefore, hydrogenated silicon films fabricated by sputtering are hard to be doped. Those inferior properties made sputtering become non-popular in the fabrication of silicon thin film cells.
In this research, we improved the qualities of hydrogenated silicon thin films and investigated electrical and optical properties with respect to deposition parameters. Our results indicated that applying positive bias voltage on the substrate provokes silicon monohydride formation, which is a rather stable bonding configuration as compared to silicon dihydride. Besides, the difficulties of doping can be reduced by refining fabrication parameters such as sputtering power and gas pressure. Futhermore, amorphous P-type / crystalline N-type silicon heterojunction solar cell using non-texture wafer surface has also been demonstrated. Proto-type solar cells with 1cm × 1cm area and 10% conversion efficiency were realized by choosing the appropriate sputtering parameters.
關鍵字(中) ★ 異質接面太陽能電池
★ 矽薄膜
★ 磁控濺鍍
關鍵字(英) ★ heterojuction solar cell
★ silicon thin film
★ magnetron sputtering
論文目次 目錄
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究規劃 3
1.4 本論文章節編排 3
第二章 文獻回顧 5
第三章 理論基礎與基本特性介紹 10
3.1電漿與濺鍍原理 10
3.2 太陽能電池工作原理 13
3.3 矽異質接面太陽能電池 16
3.4 非晶矽薄膜的缺陷鈍化與摻雜 17
3.5本質矽與摻雜矽之指標介紹 18
第四章 研究方法與分析工具 20
4.1 矽氫鍵結分析及光學相關特性 20
4.1.1 矽氫鍵結分析 20
4.1.2 薄膜光學特性分析 23
4.2 薄膜電特性與摻雜程度所需之量測 26
4.2.1 導電率 26
4.2.2 四點探針 28
4.2.3 霍爾效應量測儀 29
4.2.4 薄膜活化能 30
4.3 結晶特性分析 32
4.3.1 X光繞射儀(X-ray diffractometer) 32
4.3.2 拉曼光譜儀(Raman spectroscopy) 33
第五章 濺鍍參數影響矽薄膜特性及摻雜效率之實驗結果與分析 35
5.1 矽薄膜本質層之矽氫鍵結分析 35
5.1.1實驗設備與參數介紹 35
5.1.2比較製程參數對膜內氫含量之影響 36
5.1.3比較製程參數對微結構因子R*之影響 39
5.1.4比較製程參數對導電率之影響 42
5.1.5本節結論 43
5.2 改善摻雜效率 43
5.2.1實驗設備與參數介紹 44
5.2.2 P型含氫非晶矽(a-Si:H)薄膜之製作參數說明 45
5.2.3 P型過渡/微晶態含氫矽薄膜之製作參數說明 53
第六章 矽異質接面電池元件製作 62
6.1異質接面電池演進與背景介紹 62
6.2元件製作流程圖介紹與說明 62
6.3量測元件額外特性所需儀器與其原理 64
6.3.1載子生命量測儀(lifetime tester) 64
6.3.2量子效率(Quantum efficiency)量測系統 65
6.4 矽晶片表面清洗與處理實驗結果 65
6.5 背部電極試驗結果 67
6.6 用於元件製作之透明導電膜製程參數與特性 68
第七章 P型矽薄膜製作矽異質接面電池元件之結果與分析 71
7.1非晶P層之矽異質接面電池 71
7.1.1無AZO層之元件特性分析 72
7.1.3非晶元件結論 77
7.2微晶P型異質接面電池 78
7.2.1無AZO層之不同P層厚度元件特性分析 78
7.2.2含AZO層之不同P層厚度元件特性分析 79
7.2.3微晶元件結論 80
7.3後退火處理對元件之影響 81
7.4本章結論 83
第八章 元件優化 84
8.1 兩種不同特性的P型矽薄膜製程參數與薄膜特性 84
8.2 兩種不同特性之P層製作異質接面電池之分析 85
8.2.1微晶態P型矽薄膜所製作之元件特性分析 85
8.2.2過渡態P型矽薄膜所製作之元件特性分析 86
8.2.3綜合分析與討論 87
第九章 結論 90
參考文獻 94
圖目錄
圖1-1本論文之架構示意圖 4
圖3-1 電漿系統於不同電壓與電流狀態下之放電情形 11
圖3-2 射頻濺鍍系統與匹配網路示意圖 12
圖3-3 具有磁鐵之陰極結構示意圖 13
圖3-4 矽晶太陽能電池(同質接面)能帶結構圖 14
圖3-5 太陽能電池發電機制解說與等效電路圖 14
圖3-6 太陽能電池未照光與照光之I-V曲線變化 16
圖3-7 異質接面能帶示意圖 (a)接合前 (b)接合後 17
圖3-8 異質接面太陽能電池結構示意圖 17
圖3-9 矽晶圓與非晶矽薄膜之結構示意圖 18
圖4-1 FTIR光譜儀結構示意圖 21
圖4-2 矽氫鍵結種類與對應之波數 22
圖4-3由穿透光譜利用包絡法計算光學常數說明 24
圖4-4 Urbach tail擬合示意圖 26
圖4-5 薄膜樣品蒸鍍平行電極示意圖 27
圖4-6 暗導電率量測樣品所放置之小真空盒 28
圖4-7 霍爾效應量測原理示意圖 30
圖4-8 霍爾效應量測裝置示意圖 30
圖4-9 能帶與活化能關係示意圖 31
圖4-10 溫控器裝置圖 32
圖4-11晶體繞射X光時,布拉格方程式之幾何關係 33
圖4-12 XRD量測示意圖 33
圖5-1製程腔體示意圖 36
圖5-2不同的氫氣與氬氣分壓與偏壓下薄膜的640cm-1吸收峰量測與擬合結果 37
圖5-3在不同偏壓下薄膜的含氫量關係圖 39
圖5-4不同的氫氣與氬氣分壓與偏壓下薄膜的2000~2100cm-1吸收峰量測與擬合結果 41
圖5-5在不同偏壓下薄膜的微結構因子關係圖 42
圖5-6 不同偏壓下薄膜的暗導電率與光敏度關係圖 43
圖5-7 硼顆粒放置示意圖 44
圖5-8製程腔體示意圖 45
圖5-9 P型a-Si:H薄膜未經過退火(a)與400℃RTA後(b)之I-V量測曲線 46
圖5-10 P型a-Si:H薄膜鍍在矽晶片之表面照片。
(a)製程溫度250℃ (b)製程溫度300℃ 47
圖5-11 比較不同濺鍍功率之P型a-Si:H薄膜經由400℃ RTA前後之I-V曲線。
左上圖:200W,右上圖:150W,左下圖:100W 48
圖5-12 P型a-Si:H薄膜鍍在矽晶片之表面照片。(a)功率150W 溫度300℃
(b)功率100W溫度300℃ 49
圖 5-13 不同功率樣品RTA前後之吸收係數變化 49
圖5-14 P型a-Si:H薄膜缺陷密度與摻雜濃度、Urbach tail值之關係 51
圖5-15 不同濺鍍功率的P型a-Si:H薄膜之原子比例分析結果
(a)100W,(b)150W,(c)200W 52
圖5-16 製鍍過渡/微晶態硼顆粒放置示意圖 54
圖5-17 P型過渡/微晶態矽薄膜之I-V量測曲線 54
圖5-18功率150W與100W樣品於不同Ar/H2比例與閥門開口大小之吸收係數 57
圖5-19四個具摻雜效果的過渡/微晶態薄膜之拉曼光譜圖 58
圖5-20 (a)不同濺鍍參數之P型過渡/微晶態薄膜之SIMS量測結果,150W系列 60
圖5-20 (b)不同濺鍍參數之P型過渡/微晶態薄膜之SIMS量測結果,100W系列 61
圖6-1 矽異質接面電池製作流程圖 63
圖6-2 元件面積定義示意圖 64
圖6-3 Sinton WCT-120載子壽命量測儀 65
圖6-4 比較不同的矽晶片清洗法與氧化層去除法對於矽晶片有效載子生命之影響 66
圖6-5 鍍鎳於矽晶片經不同退火溫度之平行電極I-V曲線 67
圖6-6 (a)鎳化矽經過高溫退火後之XRD繞射圖
(b)比較500nm Ni與20nm Ni/500nm Ag之平行電極I-V量測結果 68
圖6-7 元件用AZO穿透反射與吸收光譜 69
圖7-1 非晶P層異質接面電池製作流程圖 72
圖7-2 縮小元件面積下,比較P層有無RTA處理之I-V與EQE比較 74
圖7-3 比較P層有無RTA處理之I-V與EQE比較 76
圖7-4 (a)含AZO之元件於RTA前後之反射光譜。(b)元件於RTA後表面霧化現象 76
圖7-5 (a)~(d)以掃描式電子顯微鏡觀察退火後元件表面形貌 77
圖7-6比較無AZO不同厚度之微晶P層元件的I-V與EQE 79
圖7-7比較含AZO不同厚度之微晶P層元件的I-V與EQE 80
圖7-8 不同後退火溫度之元件I-V曲線與EQE 83
圖8-1兩種不同結構之P層矽異質接面元件之I-V與EQE比較 88
圖8-2 比較20nm之過渡態與微晶態P型薄膜之吸收率 88
表目錄
表3-2 符合元件品質之摻雜非晶矽薄膜特性整理 19
表4-1 不同矽氫振動模式之常數A之數值 23
表5-1 比較不同製程溫度與氣體比例之P型a-Si:H薄膜導電率 46
表5-2 比較不同濺鍍功率之P型a-Si:H薄膜導電率 49
表5-3 RTA前後P型a-Si:H薄膜光學能隙數值 50
表5-4 RTA前後P型 a-Si:H Urbach tail數值 51
表5-5 閥門半開刻度對總壓以及PH2/PAr之影響 54
表5-6 不同濺鍍參數之P型過渡/微晶態薄膜導電率值 56
表5-7 不同濺鍍參數之P型過渡/微晶態薄膜光學能隙值 57
表5-8 不同濺鍍參數之P型過渡/微晶態薄膜結晶比率值 58
表5-9 不同濺鍍參數之P型過渡/微晶態薄膜Urbach energy值 59
表5-10不同濺鍍參數之P型過渡/微晶態薄膜活化能與電洞濃度 60
表7-1 最佳特性之非晶與微晶態P型矽薄膜製程參數整理 71
表7-2 最佳導電特性之非晶與微晶態P型矽薄膜數值整理 71
表7-3 無AZO層之元件,比較有無RTA以活化P層摻雜對於元件效率之影響 74
表7-4 含AZO層之元件,是否經過400℃ RTA活化P層摻雜對於元件效率之影響 76
表7-5 無AZO不同過渡/微晶態P型矽薄膜厚度之元件效率 79
表7-6 含AZO不同過渡/微晶態P型矽薄膜厚度之元件效率 80
表7-7不同的後退火溫度對元件特性之影響 82
表8-1 過渡態與微晶態P型矽薄膜之製程參數 85
表8-2 過渡態與微晶態P型矽薄膜之特性 85
表8-3 不同退火溫度對微晶態P型矽薄膜元件之影響 86
表8-4 不同退火溫度對過渡態P型矽薄膜元件之影響 86
參考文獻 [1.1] Photon International, http:/www.photon-magazine.com/
[1.2] W. Schockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells”, J. Appl. Phys. 32 (1961) 510-519.
[2.1] J. Tauc, “Optical properties and electronic structure of amorphous Ge and Si”, Mat. Res. Bull. 3 (1967) 37-46.
[2.2] R. C. Chittick, J. H. Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon”, J. Electrochem. Soc. 116 (1969) 77-81.
[2.3] W. E. Spear and P. G. LeComber,”Investigation of the localized state distribution in amorphous Si films”, J. Non-Cryst. Solids 8-10 (1972) 727-738.
[2.4] W. E. Spear and P. G. LeComber,”Subsitutional doping of amorphous silicon”, Solid State Commun. 17 (1975) 1193-1196.
[2.5] D. E. Carlson and C. R. Wronski, “Amorphous silicon solar cell”, Appl. Phys. Lett. 28 (1976) 671-673.
[2.6] D. L. Staebler and C. R. Wronski, “Reversible conductivity changes in discharge-produced amorphous Si”, Appl. Phys. Lett. 31 (1977) 292-294.
[2.7] J. C. Knight and R. A. Lujan, “Microstructure of plasma-deposited a-Si:H films”, Appl. Phys. Lett. 35 (1979) 244-246.
[2.8] J. C. Knight, “Characterization of plasma-deposited amorphous Si:H thin films”, Jpn. J. Appl. Phys. 18 Supplement 18-1 (1979) 101-108.
[2.9] J.A. Reimer, R. W. Vaughan and J. C. Knight, “Proton magnetic resonance spectra of plasma-deposited amorphous Si:H films”, Phys. Rev. Lett. 44 (1980) 193-196.
[2.10] J. I. Pankove and J. E. Berkeyheise “Light-induced radiative recombination centers in hydrogenated amorphous silicon”, Appl. Phys. Lett. 37 (1980) 705-707.
[2.11] M. Stutzmann, W. B. Jackson and C. C. Tsai “Light-induced metastable defects in hydrogenated amorphous silicon: A systematic study”, Phys. Rev. B 32 (1985) 23-47.
[2.12] D. E. Carlson, “Hydrogenated microvoids and light-induced degradation of amorphous silicon solar cell”, Appl. Phys. A. 41 (1986) 305-309.
[2.13] S. Nakano, H. Tarui, H. Haku, T. Takahama, T. Matsuyama, M. Isomura, M. Nishikunu, N. Nakamura, S. Tsuda, M. Ohnishi and Y. Kuwano “Material investigations for high-efficiency and high-reliability a-Si solar cells”, Proceedings of the 19th IEEE photovoltaic specialist conference, (IEEE, New York, 1987), p.678.
[2.14] E. Bhattacharya and A. H. Mahan, “Microstructure and the light-induced metastability in hydrogenated amorphous silicon”, Appl. Phys. Lett. 52 (1988) 1587-1589.
[2.15] M. H. Brodsky, R. S. Title, K. Weiser and G. D. Pettit, “Structural, optical, and electrical properties of amorphous silicon films”, Phys. Rev. B. 1 (1970) 2632-2641.
[2.16] G. A. N. Connell and J. R. Pawlik, “Use of hydrogen in structural and electronic studies of gap states in amorphous germanium”, Phys. Rev. B. 13 (1976) 787-804.
[2.17] A. J. Lewis, “Use of hydrogen in the transport properties of amorphous germanium”, Phys. Rev. B. 14 (1970) 658-668.
[2.18] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Phil. Mag. 33 (1976) 935-949.
[2.19] W. Pual, A. J. Lewis, G. A. N. Connel and T. D. Moustakas, ”Doping, Schottky barrier and p-n junction formation in amorphous germanium and silicon by rf sputtering”, Solid State Commun. 20 (1976) 969-972.
[2.20] T. D. Moustakas, D. A. Anderson and W. Pual, “Preparation of highly photoconductive amorphous silicon by rf sputtering”, Solid State Comm. 23 (1977) 155-158.
[2.21] T. Tiedje, T. D. Moustakas and J. M. Cebulka, “Effect of hydrogen on the density of gap states in reactively sputtered amorphous silicon”, Phys. Rev B. 23 (1981) 5634-5637.
[2.22] T. D. Moustakas and R. Friedman, “Amorphous silicon p-i-n solar cells fabricated by reactive sputtering”, Appl. Phys. Lett. 40 (1982) 515-517.
[2.23] M. H. Brodsky, M. Cardona and J. J. Cuomo “Infrared and Raman spectra of the silicon-hydrogen bonds in amorphous silicon prepared by glow discharge and sputtering”, Phys. Rev. B. 16 (1977) 3556-3571.
[2.24] E. C. Freeman and W. Paul, “Infrared vibrational spectra of rf-sputtered hydrogenated amorphous silicon”, Phys. Rev. B. 18 (1978) 4288-4300.
[2.25] T. D. Moustakas, “Sputtered hydrogenated amorphous silicon”, J. Electro. Mat. 8 (1979) 391-435.
[2.26] T. D. Moustakas, “Studies of thin-film growth of sputtered hydrogenated amorphous silicon”, Sol. Eng. Mat. 8 (1982) 187-204.
[2.27] M. Pinarbasi, J. R. Abelson and M. J. Kushner, “Reduced Staebler-Wronski effect in reactively sputtered hydrogenated amorphous silicon thin films”, Appl. Phys. Lett. 56 (1990) 1685-1687.
[2.28] T. D. Moustakas and H. P. Maruska, “Method for sputtering a pin microcrystalline/amorphous silicon semiconductor device with the P and N-layers sputtered from boron and phosphorous heavily doped targets” United States Patent, No.4508609 (1985)
[2.29] Y. Ohmura, M. Takahashi, M. Suzuki, N. Sakamoto and T. Meguro, “P-type doping of hydrogenated amorphous silicon films with boron by reactive radio-frequency co-sputtering” Physica B. 308-310 (2001) 257-260.
[2.30] M. M. de Lima Jr., F. L. Freire Jr., and F. C. Marques, “Boron doping of hydrogenated amorphous silicon prepared by rf-co-sputtering” Brazilian J. of Phys. 32 (2002) 379-382.
[3.1] 莊達人,《VLSI製造技術》,高立圖書有限公司 (2005)
[3.2] K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology: Principles, Technology, and Applications, (Noyes publications, Park Ridge, 1992).
[3.3] 田民波,《薄膜技術與薄膜材料》,五南圖書出版股份有限公司 (2007)
[3.4] W. R. Grove, “On the electro-chemical polarity of gases”, Philosophical Transactions of the Royal Society 142, (1852) 87-101.
[3.5] J. K. Robertson and C. W. Clapp, “Removal of metallic deposits by high-frequency currents”, Nature 132 (1933) 479-480.
[3.6] J. I. Lodge and R. W. Stewart, “Studies in high frequency discharges”, Can. J. Res. 26A (1948) 205-221.
[3.7] G. S. Anderson, W. N. Mayer and G. K. Wehner, “Sputtering of dielectrics by high-frequency fields”, J. Appl. Phys. 33 (1962) 2991-2992.
[3.8] P. D. Davidse and L. I. Maissel, “Dielectric thin films through sputtering”, J. Appl. Phys. 37 (1966) 574-579.
[3.9] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[3.10] B. G. Streetman and S. K. Banerjee, Solid State Electronic Devices, 6th edition, (Pearson Education Taiwan Ltd, 2010).
[3.11] S. O. Kasap, Optoelectronics and Photonics: Principles and Practices, (Prentice-Hall publications, 2001).
[3.12] M. Sze, Physics of Semiconductor Devices, 2nd edition, (Wiley, 1983)
[3.13] 陳柏丞,《非(微)晶矽薄膜太陽能電池之能隙結構研究》,中央大學碩士論文 (2011)
[3.14] R. C. Chittick, J. H Alexander and H. F. Sterling, “The preparation and properties of amorphous silicon”, J. Electrochem Soc. 116 (1969) 77-81.
[3.15] N. F. Mott and F. A. Davis, “Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors”, Phil. Mag. 22 (1970) 903-922.
[3.16] R. A. Street, “Doping and the fermi energy in amorphous silicon”, Phys. Rev. Lett. 49 (1982) 1187-1190.
[3.17] M. Stutzmann, D. K. Biegelsen and R. A. Street, “Detailed investigation of doping in hydrogenated amorphous silicon and germanium”,Phys. Rev. B. 35 (1987) 5666-5701.
[3.18] R. Schropp and M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, (Kluwer Academic Publishers, 1998).
[4.1] Brain C. Smith, Fundamentals of Fourier Transform Infrared Spectroscopy, (CRC press, 1996).
[4.2] HORIBA傅立葉轉換紅外線光譜儀(FTIR)使用手冊
[4.3] G. Lucovsky and W. B. Pollard, The Physics of Hydrogenated Amorphous Silicon, Part II, Topics in Applied Physics, (Springer, 1984).
[4.4] A. A. Langford, M. L. Fleet, B. P. Nelson, W. A. Lanford and N. Maley, “Infrared absorption strength and hydrogen content of hydrogenated amorphous silicon”, Phys. Rev. B. 45 (1992) 13367-13377.
[4.5] Y. Hishikawa, N. Nakamura, and S. Tsuda, “Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films”, Jpn. J. Appl. Phys. 30 (1991) 1008-1014.
[4.6] J. Tauc, Amorphous and liquid Semiconductors, (Plenum Press, 1974).
[4.7] 張庭維,《以定光電流量測之吸收係數分析矽薄膜缺陷密度之研究》,國立中央大學碩士論文 (2010)
[4.8] J. Poortmans and V. Arhipov, Thin Film Solar Cells Fabrication, Characterization and Applications, (John Wiley & Sons, 2006).
[4.9] J. Bailat, PH. D. Thesis, University of Neuchâtel, (2004).
[4.10]林麗娟,《X光繞射原理及其應用》,工業材料,第86期 (1997)
[5.1] 周凌毅,《反應式濺鍍過渡態矽薄膜之研究》,中央大學碩士論文 (2009)
[5.2] K. K. Gleason, M. A. Petrich and J. A. Reimer, “Hydrogen microstructure in amorphous hydrogenated silicon”, Phys. Rev. B. 36 (1987) 3259-3267.
[5.3] M. M. de Lima Jr., F. C. Marques, “On the doping mechanism of boron-doped hydrogenated amorphous silicon deposited by rf-co-sputtering”, J. Non-Cryst. Solids 299-302 (2002) 605-609.
[5.4] W. Beyer, H. Wagner, and H. Mell, “Effect of boron-doping on the hydrogen evolution from a-Si:H films”, Solid. State Commun. 39 (1981) 375-379.
[5.5] R. A. Street, Hydrogenated amorphous silicon, (Cambridge University Press, 1991).
[5.6] N. Wysch, F. Finger, T. J. McMahon and M. Vanecek, “How to reach more precise interpretation of subgap absorption spectra in terms of deep defect density in a-Si:H”, J. Non-Cryst. Solids 137&138 (1991) 347-350.
[5.7] G. D. Cody, C. R. Wronski, B. Abeles, R. B. Stephens, and B. Brooks, “Optical characterization of amorphous silicon hydride films”, Sol. Cells 2 (1980) 277-243.
[5.8] I. Wagner, H. Stasiewski, B. Abeles, and W. A. Lanford, “Surface states in P- and B-doped amorphous hydrogenated silicon”, Phys. Rev. B 28 (1983) 7080-7086.
[5.9] J. Ristein and G. Weiser, “Influence of doping on the optical properties and on the covalent bonds in plasma deposited amorpohus silicon”, Sol. Energy Mater. 12 (1985) 221-232.
[5.10] D. Jousse, E. Bustarret, A. Deneuville and J. P. Stoquert, “Rf-sputtered B-doped a-Si:H and a-Si-B-H alloys”, Phys. Rev. B. 34 (1986) 7031-7044.
[5.11] C. C. Tsai, “Characterization of amorphous semiconducting silicon-boron alloys prepared by plasma decomposition”, Phys. Rev. B 19 (1979) 2041-2055.
[5.12] 鄧旭軒,《以射頻磁控濺鍍法鍍製P型和N型微晶矽薄膜之研究》,中央大學碩士論文 (2008)
[6.1] M. Iwamoto, K. Minami, T. Yamaoki, “Photovoltaic device” United States Patent, No.5066340 (1991)
[6.2] M. Tanaka, M. Taguchi, T. Matsuyama, T. Sawada, S. Tsuda, S. Nakano, H. Hanafusa and Y. Kuwano, “Development of new a-Si/c-Si Heterojunction solar cells: ACJ-HIT (Artificially Constructed Junction-Heterojunction with Intrinsic Thin-Layer)”, Jpn. J. of Appl. Phys. 31 (1992) 3518-3522.
[6.3] A. Ogane, Y. Tsunomura, D. Fujishima, A. Yano, H. Kanno, T. Kinoshita, H. Sakata, M. Taguchi, H. Inoue and Eiji Maruyama, “Recent progress of HIT solar cells heading for the higher conversion efficiencies” 21th International Photovoltaic Science and Engineering Conference, Fukuoka, 2011
[6.4] B. Jagannathan, W. A. Anderson and J. Coleman, “Amorphous silicon/p-type crystalline silicon heterojunction solar cells”, Sol. Eng. Mat. and Sol. Cells 46 (1997) 289-310.
[6.5] M. A. Green, K. Emery, Y. Hishikawa, W. Warta and E. D. Dunlop, “Solar cell efficieincy tables (version 39)”, Prog. Photovolt: Res. Appl. 20 (2012) 12-20.
[6.6] E. Yablonovitch, D. L. Allara, C. C. Chang, T. Gmitter and T. B. Bright, “Unusually low surface-recombination velocity on silicon and germanium surfaces”, Phys. Rev. Lett. 57 (1986) 249-252.
[6.7] 楊明輝,《透明導電膜》,藝軒圖書出版社,(2008)
[7.1] D. Pysch, A. Mette and S. W. Glunz, “A review and comparison of different methods to determine the series resistance of solar cells”, Sol. Eng. Mat. and Sol. Cells 91 (2007) 1698-1706.
[7.2] 李正中,《薄膜光學與鍍膜技術》,第六版,藝軒圖書出版社 (2009)
[7.3] M. Iwamoto, K. Minami, T. Yamaoki, “Photovoltaic device” United States Patent, No.5066340 (1991)
[7.4] D. H. Zhang, B. Chen and D. Haneman, “Metal contacts on amorphous hydrogenated silicon: effects of annealing”, Thin Solid Films. 208 (1992) 87-90.
[7.5] J. W. Jeon, S. Y. Lee, J. O. Song and T. Y. Seong, “Low-resistance Cr/Al ohmic contacts to N-polar n-type GaN for high-performance vertical light-emitting diodes”, Curr. Appl. Phys. 12 (2012) 225-227.
[7.6] Q. Zhang, P. Vichchulada, S. B. Shivareddy and M. D. Lay, “Reducing electrical resistance in single-walled carbon nanotube networks: effect of the location of metal contacts and low-temperature annealing”, J. Mat. Sci. 47 (2012) 3233-3240.
指導教授 李正中、陳昇暉
(Cheng-Chung Lee、Sheng-Hui Chen)
審核日期 2012-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明