博碩士論文 992206056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:18.188.228.135
姓名 陳日康(Jih-Kang Chen)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 純相位式電腦全像術及全像光鉗在桿狀粒子旋轉控制之研究
相關論文
★ 成像面圓盤型複合全像術研究★ 成像面圓錐型複合全像之特性分析
★ 子波列轉換在光學圖形識別的應用★ 可環繞觀賞之成像面圓盤型複合全像術
★ 成像面圓盤型全像複製品之影像模糊分析★ 成像面圓盤型複合全像術之虛實像設計
★ 可環繞觀賞之傳統圓盤型複合全像片★ 反射式圓盤型複合全像術
★ 圓盤全像複製品之點擴散函數分析★ 利用DiscT@2製作電腦全像片之研究
★ 擴展垂直視角之反射式圓盤型複合全像術★ 利用液晶顯示器之Fresnel電腦全像術
★ 全彩反射式圓盤型複合全像術之視窗設計與數值模擬★ 全彩展示之反射式圓盤型複合全像術
★ 產生實像之成像面圓盤型複合全像片製作與複製研究★ 反射式成像面凹面圓柱型複合全像術
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電腦全像片最早起源於1966年由B. R. Brown及A. W. Lohmann提出的軌跡相位法(Detour Phase),電腦全像片乃利用電腦計算模擬全像片上的資訊分佈,最後再利用繞射光學元件(DOE)或半導體製程來儲存此資訊分佈。
在本論文中,我們討論相位式電腦全像片的製作原理,利用Fresnel繞射理論為基礎,得到全像片平面與重建平面的關係,並進而探討以單一全像片重建出多個重建平面的方法。之後利用Gerchberg-Saxton演算法則,計算出全像片平面上的相位資訊分佈,並編寫出相位式電腦全像片。接下來我們將量測液晶空間光學調製器(LC-SLM)的相位特性,得到「相位-灰階」的曲線,並以此結果去編碼相位式電腦全像片,再將其輸入至液晶空間光學調製器,進行光學重建實驗。
最後我們將探討雷射光鉗的原理,並將搭配LC-SLM的電腦全像術,應用於雷射光鉗技術上,製作出即時且動態的3-D電腦全像光鉗,增加光鉗應用性。接下來再利用3-D電腦全像光鉗,對球型粒子做3-D全方向的移動控制。最後我們以一個光鉗組,去鉗住長軸長約5~8μm的圓柱粒子,使其作出兩種不同方向的旋轉。
摘要(英) The first computer-generated hologram (CGH) - detour phase method was introduced by Brown and Lohmann’s in 1966. Computer calculation is used to simulate the distribution of information on a hologram, and then the diffractive optical elements (DOE) or semiconductor manufacture are used to store and reconstruct.
In this thesis, we begin by discussing the principles of constructing computer-generated phase holograms, based on use of the Fresnel diffraction theory, to obtain the relationship between the hologram plane and the reconstruction plane, and then explore the methods of reconstructing multiple planes from a single hologram. We next employ the Gerchberg-Saxton algorithm to calculate the distribution of the information on the hologram and make the phase-only CGH. After that, we measure the phase properties of the liquid-crystal spatial light modulator (LC-SLM) to obtain the “phase-gray” curve, use this result to encode the phase-only CGH, and enter it into an LC-SLM to conduct experimentation on optical reconstruction.
In the conclusion, we examine the principles of laser tweezers, and apply the laser-tweezer technique in conjunction with the CGH LC-SLM technique to improve the applicability of optical tweezers in creating real-time and dynamic 3D holographic optical tweezers. We follow by again using holographic optical tweezers for 3D shift control of the spherical particles. Finally, we use an optical tweezer array to trap columnar particles with a long axis of approximately 5~8μm, as a means of effecting rotation in two different directions.
關鍵字(中) ★ 電腦全像
★ 全像光鉗
★ 桿狀粒子旋轉
關鍵字(英) ★ holography optical tweezers
★ computer-generated holograms
論文目次 摘要........................................................................................ i
Abstract................................................................................. ii
致謝................................................................................. iii
目錄................................................................................. iv
圖目錄........................................................................................................... viii
表目錄................................................................................. xi
第一章 導論..................................................................................................... 1
1.1. 前言............................................................................................. 1
1.2. 論文內容安排............................................................................. 2
第二章 相位式電腦全像片原理與演算法..................................................... 3
2.1. 電腦全像術基本原理................................................................. 4
2.2. 單平面 Gerchberg-Saxton演算法則......................................... 6
2.2.1 原理................................................................................. 6
2.2.2 編寫流程....................................................................... 10
2.3. 多平面 Gerchberg-Saxton演算法則........................................ 13
2.3.1 原理............................................................................... 13
2.3.2 編寫流程....................................................................... 17
第三章 液晶式空間光學調製器原理與相位特性量測............................... 22
3.1 LC-SLM工作原理.................................................................... 23
3.1.1 LCD結構組成.............................................................. 23
3.1.2 TN-LCD工作原理....................................................... 25
3.1.3 ECB-LCD工作原理..................................................... 29
3.2 LC-SLM儀器介紹.................................................................... 31
3.3 LC-SLM相位特性量測............................................................ 35
3.3.1 LC-2002相位特性量測................................................ 35
3.3.2 LC-R2500相位特性量測............................................. 38
3.3.3 PLUTO相位特性量測................................................. 41
第四章 使用LC-SLM建立相位式電腦全像片的光學重建結果................ 43
4.1 光學重建架構........................................................................... 43
4.1.1 以LC2002重建目標圖形之系統架構....................... 43
4.1.2 以LC-R2500重建目標圖形之系統架構..................... 44
4.1.3 以PLUTO重建目標圖形之系統架構......................... 45
4.2 One-Plane相位式電腦全像片光學重建結果.......................... 45
4.2.1 以LC-2002重建目標圖形之光學重建結果............... 45
4.2.2 以LC-R2500重建目標圖形之光學重建結果............. 47
4.2.3 以PLUTO重建目標圖形之光學重建結果................. 48
4.3 Multi-Plane相位式電腦全像片光學重建結果........................ 49
4.3.1 以LC-2002重建目標圖形之光學重建結果............... 49
4.3.2 以LC-R2500重建目標圖形之光學重建結果............. 53
4.3.3 以PLUTO重建目標圖形之光學重建結果................. 61
第五章 電腦全像光鉗之應用....................................................................... 75
5.1 傳統雷射光鉗原理及架構....................................................... 76
5.1.1 原理............................................................................... 76
5.1.2 一般雷射光鉗基本架設............................................... 81
5.2 電腦全像光鉗方式與應用....................................................... 82
第六章 電腦全像光鉗實驗結果................................................................... 87
6.1 實驗架構與儀器介紹............................................................... 87
6.2 在焦平面上鉗住多點並移動的實驗結果............................... 89
6.3 令粒子在Z軸方向移動的實驗結果........................................ 91
6.4 以全像光鉗令柱狀Sample轉動的實驗結果.......................... 92
6.4.1 長軸從y-z平面推至x-y平面...................................... 94
6.4.2 長軸在x-y平面旋轉.................................................... 98
6.4.3 長軸在y-z平面旋轉180°........................................... 99
第七章 結論與未來展望............................................................................. 102
7.1. 結論......................................................................................... 102
7.2. 未來展望................................................................................ 103
參考文獻....................................................................................................... 104
附錄A............................................................................................................ 106
參考文獻 [1]. B. R. Brown, A. W. Lohmann, “Computer-generated Binary Holograms, ” IBM J. RES. DEVELOP, pp. 160 (1969)
[2]. 林政宏,“相位式電腦全像片之研究”,國立臺灣師範大學,光電科技研究所(2003)
[3]. M. Makowski, M. Sypek, I. Ducin, A. Fajst, A. Siemion, J. Suszek, A. Kolodziejczyk, “Experimental evaluation of a full-color compact lensless holographic display, ” Opt. Express, Vol. 17, Issue 23, pp. 20840–20846 (2009)
[4]. 黃鈞正, 吳崇安, 邱爾德, “光學嵌住之技術簡介, ” 物理雙月刊, 22卷5期, pp. 477-484 (2000)
[5]. 龔昱翰,“大腸桿菌在光鉗作用力下運動的分析”,私立輔仁大學,物理研究所(2007)
[6]. D. Gabor, “A new microscopic principle,” Nature 161., pp.777 (1948).
[7]. D. Gabor, “Microscope by reconstructed wavefronts,” Proc. Roy. Soc. A197, pp. 453-487 (1949)
[8]. E. N. Leith and J. Upatniek, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Amer. 52, 1123-1130 (1962).
[9]. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express, Vol. 15, Issue 4, pp. 1913–1922 (2007)
[10]. G. Sinclair, J. Leach, P. Jordan, G. Gibson, E. Yao, Z. J. Laczik, M. J. Padgett, and J. Courtial, “Interactive application in holographic optical tweezers of a multi-plane Gerchberg-Saxton algorithm for three-dimensional light shaping,” Opt. Express, Vol. 12, Issue 8, pp. 1665–1670 (2004)
[11]. T. Haist, M. Schonleber, HJ. Tiziani, “Computer-generated holograms from 3D-objects written on twisted-nematic liquid crystal displays, ” Opt. Commun.140, p299-308 (1997)
[12]. R. W. Gerchberg, W. O. Saxton, “A practical algorithm for the determination of the phase from image and diffraction plane pictures,” Optik, Vol. 35, Issue 2, pp. 237-246 (1972)
[13]. J. W. Goodman, Introduction to Fourier Optics (Roberts & Company, 2004)
[14]. Slimane Djidel, Justyna K Gansel, Heather I Campbell, Alan H Greenaway, “High-speed, 3-dimensional, telecentric imaging,” Optics Express, Vol. 14, Issue 18, pp. 8269-8277 (2006)
[15]. 張耿維,“純相位繞射光學元件的設計並以液晶空間光調制器實現之”, 國立中央大學, 光電科學研究所(2005)
[16]. 田民波, “ TFT 液晶顯示原理與技術”,(2008)
[17]. HOLOEYE, LC 2002 Spatial Light Modulator – Microdisplay Features, URL http://www.holoeye.com/spatial_light_modulator_lc_2002.html
[18]. HOLOEYE, LC-R 2500 Spatial Light Modulator – Microdisplay Features, URL http://www.holoeye.com/spatial_light_modulator_lc_r_2500.html
[19]. HOLOEYE, Pluto Spatial Light Modulator – Microdisplay Features, URL http://www.holoeye.com/spatial_light_modulators_pluto.html
[20]. J. Andilla, E. Martin-Badosa, S. Vallmitjana, “Prediction of phase-mostly modulation for holographic optical tweezers, ”Optics Communications, Vol. 281, Issue 14, pp. 3786-3791
[21]. A. Ashkin, “Acceleration and trapping of particles by radiation pressure, ” Phys. Rev. Lett. , Vol. 24, Issue 5, pp. 156-159 (1970)
[22]. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles, ” Opt. Lett., Vol. 11, Issue 5, pp. 288-290 (1986)
[23]. 吳崇安, 黃鈞正, 邱爾德, “光學嵌住之理論探討, ” 物理雙月刊, 22卷5期, pp. 485-493 (2000)
[24]. A. Ashkin, “Force of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime, ” Biophy. J. , Vol. 61, Issue 2, pp. 569-582 (1992)
[25]. E Martín-Badosa, M Montes-Usategui, A Carnicer, J Andilla, E Pleguezuelos and I Juvells, “Design strategies for optimizing holographic optical tweezers setups, ” J. Opt. A: Pure and Appl. Opt. , Vol. 9, Issue 8, pp. 267-277 (2007)
[26]. Nathan J. Jenness, Kurt D. Wulff, Matthew S. Johannes, Miles J. Padgett, Daniel G. Cole, Robert L. Clark, “Three-dimensional parallel holographic micropatterning using a spatial light modulator, ” Opt. Express, Vol. 15, Issue 20, pp. 15942-15948 (2008)
[27]. F. Horner, M Woerdemann, S. Muller, B. Maier, C. Denz, “Full 3D translational and rotational optical control of multiple rod-shaped bacteria, ” JOURNAL OF BIOPHOTONICS, Vol. 15, Issue 7, pp. 468-475 (2010)
[28]. Paul B. Bareil, Yunlong Sheng, Arthur Chiou, Local stress distribution on the surface of a spherical cell in an optical stretcher, ” Opt. Express, Vol. 14, Issue 25, pp. 12503-12509 (2006)
指導教授 陳慧琪、鄭益祥
(Hui-Chi Chen、Yih-Shyang Cheng)
審核日期 2012-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明