博碩士論文 972406006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:51 、訪客IP:3.146.221.125
姓名 蕭旭良(Hsu-Liang Hsiao)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 利用矽基光學平台應用於板上光學連接之研究
(Research on On-Board Optical Interconnect Based on Silicon Optical Bench)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文中,主要研究在利用矽基光學平台的技術應用於高速、短距離、且多通道的光學引擎。近年來的發展,雲端電腦及相關的高速連接之可攜帶的周邊元件,如何運用光學連接技術,以更高速、多通道、微型化,甚至於低成本應於市場的大量生產,已經成為了日漸重要的研究領域,其中,矽基光學平台技術已於日前完成光電、電光的轉換模組,成功應用於市場的產品。利用矽微機電技術,引入可達微米等級之高結構精度的封裝技術,將是導入高精度整合於光電元件的關鍵,如面射型雷射、光檢測器、光纖陣列等主被動元件。使得在大量生產時更具備有低成本的優勢。
首先,在第一個研究討論中,發展出一具有四通道 × 10 Gbps之光連接模組。此模組中,光學平台具有一45度微反射面,且同時具有多通道之V型凹槽陣列積體化至一微小的光學平台中,此凹槽提供了後續光纖陣列之被動封裝。此矽基光學平台利用金錫的共晶材料及覆晶封裝的方式將面射型雷射(VCSEL)及光檢測器(PD)封裝至光學平台上形成一矽基雙通道之光學次模組(BOSA)。BOSA體積僅只有4 mm × 3.75 mm × 0.6 mm 的大小,且四通道的發射模組及四通道的接收模組將可完全的置放於此BOSA中,光纖陣列置放於此模組中達到微型化的優點。此外,在光路的結構上,不添加任何額外的光學系統,即可將光從面射型雷射高度耦合至光纖陣列中,耦合效率達到-5.2 dB;同時,光於光纖陣列發射至光檢測器,耦合效率高達-2 dB。平均1 dB的光功率變化,不論在發射端,亦或是接收端,均可達到15 ?m的容忍度。在高頻的檢測下,發射端搭載10 Gbps的傳輸速度,BER可通過10-12的量測規範;於接收端的檢測,靈敏度也可達到-12 dBm的等級,且此量測的架設,通道的串音影響已經考慮進來。本研究中,從開始的晶片製程、光電元件封裝、PCB的設計、元件封裝、光纖對準製程及高頻測試均有一一介紹。此光電模組也通過了工業上的可靠度驗證。此結果表示矽基光學平台是具有一個多功能、整合性高的系統平台,可應用於光電、電光的轉換模組。
本論文的另一部分,是成功的將以聚合物的波導結構應用於矽基光學平台上。此應用將大幅的提供光路佈局、設計的靈活性。以目前不易設計之25 Gbps的光路應用,在光學耦合上,即面臨到感光區較小的光檢測器,亦或是大數值孔徑的面射型雷射的問題。因此,聚合物的波導結構將可伴演一重要的角色去克服目前所面臨到的問題。四通道的光電、電光轉換模組利用聚合物波導的結構已成功的實現,並且可以搭載光學傳輸訊號。聚合物之波導結構是利用標準的黃光微影製程所製作,其波導的纖核為40 ?m等級的大小,這和實用上的多模光纖之纖核的尺寸是吻合的。因此我們相信此結構可以成為未來光連接應用之轉換模組,且更具有微型化適合的尺寸。
摘要(英) In this dissertation, the researches focus on the high-speed multi-channel short-reach (SR) optical engine platform development based on the silicon optical bench (SiOB) technologies. As the rapid development of cloud computing and upcoming high-speed link expectation for portable devices, how to drive the optical interconnect technology to higher speed, multi-channels, miniaturization, and even low costs in mass production has become the research hot zone, where the SiOB technology has been received with great attentions on completing the OE/EO converter. SiOB-based optical engine can be conducted via silicon Micro Electro Mechanical Systems (MEMS) process, leading to high structural accuracy up to few micron-meters, precisely packaging among micro-optical elements, such as VCSEL/PD and MMFs, and cost competitive advantages in mass batch production.
In first research topic, a 4-channel x 10-Gbps optical interconnect module based on a SiOB with a 45 degree reflector as well as monolithic V-groove array for fiber alignment is developed. The 4-channel VCSEL and PD arrays are flip-chip assembled onto the pedestal of SiOB using Au/Sn eutectic solder bumps to form a SiOB-based bi-directional optical sub-assembly (BOSA) configuration. In a 4 mm × 3.75 mm × 0.6 mm small size, 4-Tx and 4-Rx channels can be completed, bringing into physical size advantage for portable cables with optical link. The optical coupling of VCSEL-to-MMF and MMF-to-PD without adding coupled optics is -5.2 and -2 dB, respectively. The widely alignment tolerances of 1-dB power variation for the transmitting and receiver parts are 15-?m are achieved. The clearly open 10-Gbps eye patterns of Tx part as well as BER of 10-12 . The Rx sensitivity can reach to as low as -12 dBm as input optical power with channel cross-talk enabled. The research study starts from wafer process, chip-level packaging, PCB circuit and chip-on-board assembly, fiber mounting, to highs-speed testing, and also industrial reliability testing applied. The results indicate this SiOB optical engine can be a fundamental platform for versatile optical interconnect applications with high-speed and compact OE/EO module.
In the last part of this dissertation, a polymer waveguide technology has been to apply into this SiOB platform. To providing more optical layout flexibility and also, the upcoming 25-Gbps optical link with tougher optical coupling requirement due to the smaller sensing area of PD or larger NA of VCSEL, polymer waveguide can play an important role to overcome these issues. A multi-channels OE/EO module with polymer waveguide on SiOB has been successfully realized with optical link by fiber coupled. The polymer waveguide can be fabricated onto the SiOB with standard lithography process, whose core size is approx. up to 40-?m scale with compatible size of MMF’s core. We believe this configuration can be a basis for future more compact size OE module or higher speed optical interconnects applications.
關鍵字(中) ★ 光學連接
★ 矽基光學平台
★ 45度反射面
關鍵字(英) ★ Optical Interconnect
★ 45 Degree Reflector
★ SiOB
論文目次 Abstracts I
Abstracts in Chinese III
Acknowledgements V
Contents VI
Figure Lists VIII
Table Lists XI
Chapter 1 Introduction 1
1.1 Optical Interconnects Demands in Datacom and IT Devices 3
1.2 Existing Technologies for Optical Interconnects 6
1.3 Research Objectives in This Dissertation 11
Chapter 2 Design for Miniaturized Bidirectional Optical Subassembly Using Silicon Optical Bench with 45° Micro-Reflectors in Short-Reach 40-Gbps Optical Interconnects 14
2.1 Introduction 14
2.2 Characterization of Optical Design via SiOB-Based OSA 18
2.3 Realization of SiOB-Based BOSA 20
2.4 Optical Evaluation of SiOB-Based BOSA 23
2.5 Electrical Evaluation of SiOB-Based BOSA 25
2.6 Summary 27
Chapter 3 Realization for Miniaturized Bidirectional Optical Subassembly Using Silicon Optical Bench with 45° Micro-Reflectors in Short-Reach 40-Gbps Optical Interconnects 28
3.1 Introduction 28
3.2 Realization of Optical Interconnect Module 29
3.3 Characterization of Optical Interconnect Module 35
3.4 Summary 38
Chapter 4 Polymer Waveguides Embedded into Silicon Optical Bench with 45° Micro-Reflectors for On-Board Optical Interconnect Study 39
4.1 Introduction 39
4.2 Characterization of Optical Design for SiOB-Based Polymer Waveguide in Optical Interconnect 42
4.3 Realization of SiOB-Based Polymer Waveguide in Optical Interconnect 46
4.4 Summary 51
Chapter 5 Conclusion and Future Works 52
References 58
Publication Lists 62
參考文獻 [1] B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol., 22(9), 2043-2054 (2004)
[2] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron., 24(2), 927-934 (2006)
[3] M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express, 14(15), 6823-6836 (2006).
[4] X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—From point-to-point interconnection to optical bus architecture,” Proc. SPIE, 6899, 6899031-6899039 (2008).
[5] D.V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, and J. S. Ahearn, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” IEEE J. Lightwave Technol., 19(8), 1093-1103 (2001).
[6] L. Schares et al., “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron., 12(5), 1032-1044 (2006).
[7] T. Hino, R. Kuribayashi, Y. Hashimoto, T. Sugimoto, J. Ushioda, J. Sasaki, I. Ogura, I. Hatakeyama, and K. Kurata, “A 10 Gbps x 12 channel pluggable optical transceiver for high-speed interconnections,” in IEEE Electronic Components and Technology Conference, pp. 1838–1843, 2008.
[8] N. Savage, “Linking with light,” IEEE Spectr. vol. 39, no. 8, pp. 32–36, 2002.
[9] Intel’s official website: http://ark.intel.com/products/65523/Intel-Core-i7-3770K-Processor.
[10] M. Haurylau, C. Q. Chen, H. Chen, J. D. Zhang, N. A. Nelson, D. H. Albonesi, E. G. Friedman, and P. M. Fauchet, “On-chip optical interconnect roadmap: Challenges and critical directions,” IEEE J. Sel. Topics Quantum Electron., vol. 12, no. 6, pp. 1699–1705, 2006.
[11] Coughlin Associates, “Hard Disk Drive Capital Equipment Market & Technology Report,” Feb., 2012.
[12] Heeseung Jo, Youngjin Kwon, Hwanju Kim, Euiseong Seo, Joonwon Lee and Seungryoul Maeng, “SSD-HDD-Hybrid Virtual Disk in Consolidated Environments”
[13] Sang-Won Lee, Bongki Moon, and Chanik Park, “Advances in flash memory SSD technology for enterprise database applications,” Conference on Management of data, pp. 863-870, 2009
[14] A. C. Alduino, M. J. Paniccia, “Method and apparatus providing an electrical-optical coupler, ” U.S. Patent No. 7,306,378, 2007.
[15] I. Hatakeyama, K. Miyoshi, J. Sasaki, K. Yamamoto, M. Kurihara, T. Watanabe, J. Ushioda, Y. Hashimoto, R. Kuribayashi, and K. Kurata, “A 400 Gbps backplane switch with 10 Gbps/port optical I/O interfaces,” in Proc. SPIE 6014, pp. 60140J, 2005..
[16] L. Wang, J. Choi, X. Wang, R. T. Chen, D. Hass, and J. Magera, “Thin film optical waveguide and optoelectronic device integration for fully embedded board level optical interconnects,” in Proc. SPIE 5556, pp. 1-14, 2004.
[17] F. Mederer, R. Michalzika, J. Guttmannb, H. P. Huberb, B. Lunitzb, J. Moiselb, and D. Wiedenmannc, “10 Gb/s data transmission with TO-packaged multimode GaAs VCSELs over 1 m long polymer waveguides for optical backplane applications,” Opt. Commun., vol. 206, no. 4-6, pp. 309-312, 2002..
[18] Website resource: http://www.gbe.com.tw/products/infiniband_c.htm
[19] Website resources: InfiniBand Roadmap http://www.infinibandta.org/content/pages.php?pg=technology_overview
[20] Intel’s official website: http://techresearch.intel.com/articles/None/1813.htm
[21] Corning Incorporated: ClearCurveR VSDNR Optical Fiber for Consumer Applications,” OFC 2012
[22] Apple Inc.’s official website: http://www.apple.com/thunderbolt/
[23] H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron., vol. 16, no. 5, pp. 1337-1346, Sep. 2010.
[24] L. A. B. Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, and D. W. Dolfi, “Parallel-Optical Interconnects >100 Gb/s,” Journal of Light. Tech., vol. 22, no. 9, pp. 2055-2063, Sep. 2004.
[25] J.-Y. Park, H.-S. Lee, S.-S. Lee, and Y.-S. Son, “Passively aligned transmit optical subassembly module based on a WDM incorporating VCSELs,” IEEE Photon. Technol. Lett., vol. 22, no. 24, pp. 1790-1792, Dec. 2010
[26] A. Barkai, Y. Chetrit, O. Cohen, R. Cohen, N. Elek, E. Ginsburg, S. Litski, A. Michaeli, O. Raday, D. Rubin, G. Sarid, N. Izhaky, M. Morse, O. Dosunmu, A. Liu, L. Liao, H. Rong, Y. Kuo, S. Xu, D. Alduino, J. Tseng, H. Liu, and M. Paniccia, “Integrated silicon photonics for optical networks,” OSA J. Opt. Netw., vol. 6, no. 1, pp. 25–47, 2007.
[27] S.-P. Han, I.-K. Cho, S.-H. Hwang, W.-J. Lee, and S.-H. Ahn, “A high-density two-dimensional parallel optical interconnection module,” IEEE Photon. Technol. Lett., vol. 17, no. 11, pp. 2448-2450, Dec. 2005.
[28] S. H. Hwang, D. D. Seo, J. Y. An, M.-H. Kim, W. C. Choi, S. R. Cho, S. H. Lee, H.-H. Park, and H. S. Cho, “Parallel optical transmitter module using angled fibers and a v-grooved silicon optical bench for VCSEL array,” IEEE Trans. on Advan. Packag., vol. 29, no. 3, pp. 457-462, Aug. 2006.
[29] H. C. Lan, H. L. Hsiao, C. C. Chang, C. H. Hsu, C. M. Wang, and M. L. Wu, “Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express, vol. 17, no. 23, pp. 20938-20944, Nov. 2009.
[30] H. L. Hsiao, H. C. Lan, C. C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, “Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express, vol. 17, no. 26, pp. 24250-24260, Dec. 2009
[31] Sony’s official website: http://www.sony.net/Products/SC-HP/cx_news/vol68/featuring_1.html
[32] R. Heming, L. C. Wittig, P. Dannberg, J. Jahns, E. B. Kley, and M. Gruber, “Efficient planar-integrated free-space optical interconnects fabricated by a combination of binary and analog lithography,” IEEE J. Lightwave Technol., vol. 26, no. 14, pp. 2136–2141, 2008.
[33] H. L. Althaus, W. Gramann, and K. Panzer, “Microsystems and wafer processes for volume production of highly reliable fiber optic components for telecom- and datacom-application,” IEEE Trans. on Compon., Packag., and Manufact. Technol. pt. B, vol. 21, no. 2, pp. 147–156, 1998.
[34] H. Takahara, “Optoelectronic multichip module packaging technologies and optical input/output interface chip-level packages for the next generation of hardware systems,” IEEE J. Sel. Top. Quantum Electron., vol. 9, no. 2, pp. 443–451, 2003
[35] Y. Ishii, N. Tanaka, T. Sakamoto, and H. Takahara, “Fully SMT-compatible optical –I/O package with microlens array interface,” IEEE J. Lightwave Technol., vol. 21, no. 1, pp. 275–280, 2003.
[36] F. Wang, F. Liu, and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Opt. Express, vol. 17, no. 13, pp. 10514–10521, 2009.
[37] F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, “160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. on Advan. Packag., vol. 32, no. 2, pp. 345-359, May 2009.
[38] R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. on Advan. Packag., vol. 31, no. 4, pp. 759-767, Nov. 2008.
[39] K. Nakama, Y. Matsuzawa, Y. Tokiwa, and O. Mikami, “Board-to-board optical plug-in interconnection using optical waveguide plug and micro hole array,” IEEE Photon. Technol. Lett., vol. 23, no. 24, pp. 1881-1883, Dec. 2011.
[40] J. Beals IV, N. Bamiedakis, A.Wonfor, R.V. Penty, I.H. White, J.V. DeGroot Jr., K. Hueston, T.V. Clapp, and M. Glick, “A terabit capacity passive polymer optical backplane based on a novel meshed waveguide architecture,” Appl. Phys. A, vol. 95, no. 4, pp. 983-988, Feb. 2009.
[41] M. Schneider, T. Kuhner, J. Mohr, and D. Maas, “Fibers in printed circuit boards with passively aligned coupling,” Journal of Light. Tech., vol. 28, no. 15, pp. 2121-2128, Aug. 2010.
[42] L. Chen and M. Lipson, ”Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17, 7901–7906 (2009)
[43] L. Vivien, M. Rouviere, J.-M. Fedeli, D. M.-Morini, J.-F. Damlencourt, J. Mangeney, P. Crozat, L. E. Melhaoui, E. Cassan, X. L. Roux, D. Pascal, and S. Laval, ”High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15, 9843–9848 (2007).
[44] L. Chen, K. Preston, S. Manipatruni, and M. Lipson, ”Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17, 15248–15256 (2009)
[45] H. Park, A. W. Fang, S. Kodamaa, and J. E. Bowers, ”Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13, 9460–9464 (2005).
指導教授 伍茂仁(Mount-learn Wu) 審核日期 2012-7-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明