博碩士論文 972406010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:134 、訪客IP:3.135.247.196
姓名 張家齊(Chia-Chi Chang)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 導波矽光學平台於光學連接之研究
(Research on Guide-Wave Silicon Optical Bench for Optical Interconnect)
相關論文
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 以矽光學平台為基礎之4通道×10-Gbps 光學連結模組之接收端研究
★ 透明導電層上之高分子聚合物微奈米光學結構於氮化鎵發光二極體光學特性研究★ 具45度反射面之非共平面轉折波導光路
★ 以矽光學平台為基礎之4通道 x 10 Gbps光學連結模組之發射端★ 具三維光路之光連接發射端模組
★ 矽基光學平台技術為核心之雙向4通道 x 10-Gbps光學連接收發模組★ 建立於矽基光學平台之高分子聚合物波導光路
★ 適用於色序式微型投影機之微透鏡陣列積分器光學系統研製★ 發光二極體色溫控制技術及其於色序式微型投影機之應用
★ 具45˚矽基反射面高分子聚合物波導之10-Gbps晶片內部光學連接收發模★ 在陶瓷基板實現高速穿孔架構之5-Gbps光學連接模組
★ 具垂直分岔光路之10-Gbps雙輸出矽基光學連接模組★ 利用光展量概念之微型投影機光學設計方法與實作
★ 以1 × 2垂直分岔高分子聚合物光路實現單晶片20-Gbps矽基光學連接模組★ 利用三維矽波導光路實現10-Gbps單晶片光學連接模組
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文概念為發展應用於光連接之導波矽光學平台。其研究重心在如何透過帶有45度微反射面之光波導,將封裝於矽光學平台上之主動元件進行光學的非共平面耦合。而導波矽光學平台可以分為兩種模式:(i) 基於SOI基板之矽梯形波導,以及(ii) 基於矽基板之聚合物波導。在矽梯形波導研究中,使用1310 nm光源在所提出的SOI矽光學平台中,首次驗證三維光路連接SOI基板上之非共平面。而在聚合物波導的研究中,則是首次驗證 850 nm 光源可以被應用於矽基板之光連接技術上。
聚合物波導整合45° 微反射鏡之矽光學平台已被驗證,且可利用於傳輸波長為850 nm之光源。提出的架構之耦合效率為 -2.5dB,而聚合物波導的傳輸損耗為0.35 dB/公分。在週期為 250 μm的多通道傳輸應用,其通道間串音干擾可以達到-40 dB的水準。另外,聚合物波導可同時連接兩個矽基45度微反射面,此提出的架構可以發展成為垂直性分光元件。其結果驗證,可在兩個不同的輸出端測量到光強度分別為-6.8dB 和 -5.6 dB。其分光率大約為 3:2,¬而此垂直性分光元件總插入損耗約3.92 dB。
另一方面,矽波導型結構採用SOI作為基板。其SOI波導結合矽基45度反射面被驗證應用在三維非共平面光連接上。此提出之SOI矽波導光學平台可以應用於波長大於 1100 nm 的光源,而本研究採用1550 nm光源作為驗證光源。提出的架構之耦合效率為 -4.51dB,而SOI波導的傳輸損耗為0.404 dB/公分。此架構在1-dB位移誤差有超過 ±20 μm的容許值可以應用,另外通道間的串音干擾可低至-53 dB。相同的,SOI波導架構亦可發展為垂直性分光元件。其分光元件總插入損耗約在3.5 to 3.9 dB之間。而分光比例可以藉由調整SOI波導寬度,本研究實際驗證分光比例控制在大約為4:1, 2:1, 和1:1。
最後,矽波導型的SOI矽光學平台實際應用並製做成光連接的發射模組。面射型雷射採用倒晶封裝技術直接封裝在矽光學平台上,並實際的傳輸5 Gbps之高速訊號。 量測結果可以得到一個清楚的 5Gbps 眼圖。由此可證實此三維的矽光學平台可以有效的耦合面射型雷射並傳輸高速訊號。所得到之結果可應用並發展晶片內部光學連接。
摘要(英) In this dissertation, the concept of guided-wave silicon optical bench (GW-SiOB) is proposed for optical interconnects. The research focuses on developing optical waveguides with 45° micro-reflectors for out-of-plane coupling as the active devices being assembled on silicon optical bench. The GW-SiOB can be classified into two groups, optical waveguides of (i) silicon trapezoidal waveguides based on silicon-on-insulator (SOI) substrate, and (ii) polymer waveguides based on silicon substrates. In the silicon trapezoidal waveguide case, the three-dimensional (3-D) optical paths interconnect the front and rear facets of SOI substrate using the 1310-nm light wave is demonstrated the first time. In the polymer waveguide case, the 850-nm light wave can be applied to optical interconnects on silicon substrates for the first time.
The polymer waveguides embedded in the SiOB with 45° micro-reflector using the laser beam of 850-nm wavelength is demonstrated. The coupling efficiency of the proposed structure is -2.5 dB and the propagation loss of polymer waveguide is 0.35 dB/cm. For multi-channels application, the channel pitch for the waveguide array is 250 μm. The cross talk of channel-to-channel could be suppressed down to -40 dB. The polymer waveguides combined with silicon-based 45° micro-reflectors are also realized on a silicon substrate to demonstrate a vertical splitter with out-of-plane output ports. Its transmission efficiencies are -6.8 and -5.6 dB, respectively, for two output ports. The split ratio of proposed splitter is around 3:2. The total insertion loss of proposed splitter is estimated as 3.19 dB. The first output port can be placed a photodiode to monitor the power of input port.
On the other hand, the SOI-based trapezoidal waveguide with a 45° micro-reflector is realized to demonstrate a 3-D bending for non-coplanar optical interconnects. The proposed SOI-based SiOB can apply to wavelength over 1100 nm. The transmission efficiency of proposed structure with wavelength of 1550 nm can be controlled at the level of -4.51 dB, and the propagation loss of SOI waveguide is 0.404 dB/cm. The wider alignment tolerance of ±20 μm is achieved to facilitate the system assembly. The multi-channel trapezoidal waveguides are also demonstrated to verify the cross talk of channel-to-channel as low as -53 dB. The vertical power splitter based on guide-wave SiOB with 45˚ micro-reflector is also realized to demonstrate a 3-D silicon photonics. This guide-wave power splitter has two Si-based 45˚ micro-reflectors, one is utilized to bend the light beam into SOI waveguide, and the other separates partial power to monitor the power of laser or be a variable optical path. The total insertion loss of proposed splitter is around 3.5 to 3.9 dB. The power split ratio can be controlled by modulating the width of waveguide and the split ratio with around 4:1, 2:1, and 1:1 have demonstrated in this research. The wider alignment tolerance of proposed splitter is more than the present assembly technology (±5 um) and achieved to facilitate the system assembly.
Finally, a SOI-based optical interconnect transmitter with trapezoidal waveguides and 45° micro-reflectors is demonstrated. The trapezoidal waveguides monolithically integrated with 45° micro-reflectors facilitate a 3-D bending for non-coplanar optical interconnects. It would simplify and shrink the intra-chip optical interconnect located on a silicon substrate. The clearly open eye patterns at 5-Gbps data rate verify the proposed guide-wave SiOB is suitable for intra-chip optical interconnects.
關鍵字(中) ★ 導波矽光學
★ 光學連接
★ 三維光路
關鍵字(英) ★ three-dimensional optical path
★ guide-wave silicon optics
★ optical interconnect
論文目次 Abstracts I
Abstracts in Chinese III
Acknowledgements V
Contents VI
Figure Captions VIII
Table Captions XII
Chapter 1. Introduction 1
Chapter 2. Polymer Waveguide Splitter Based on Silicon Optical Bench with 45° Micro-Reflectors 8
2.1. Introduction 8
2.2. Design of Polymer Waveguide Vertical Power Splitter Embedded in SiOB With 45° Micro-Reflector 11
2.2.1 Multi-mode Polymer Waveguide Design and Fabricated Results 11
2.2.2 Design of Polymer Waveguide Vertical Power Splitter Based on SiOB 12
2.3. Fabricated and Measured Results of Optical Splitter Based on SiOB 16
2.4. Summary 19
Chapter 3. SOI-Based Guide-Wave Silicon Optical Bench with 45° Micro-Reflector for Non-coplanar Optical Interconnect 20
3.1. Introduction 20
3.2. Design of SOI-Based Guide-Wave Silicon Optical Bench with 45° Micro-Reflector for Non-Coplanar Optical Interconnect 22
3.3. Analyzed Results of Silicon Waveguide Embedded in SiOB with 45° Micro-Reflector 26
3.4. Summary 30
Chapter 4. Non-Coplanar Guide-Wave Splitter Based on Silicon Optical Bench with 45° Micro-Reflectors 31
4.1. Introduction 31
4.2. Design of Non-Coplanar Guide-Wave Splitter Based on SiOB with 45° Micro-Reflectors 33
4.3. Fabricated and Measured Results and Analysis of Guide-Wave Splitter Based on SiOB 37
4.4. Summary 43
Chapter 5. Optical Interconnect Transmitter Based on Guide-Wave Silicon Optical Bench 44
5.1. Introduction 44
5.2. Design of SOI-based Optical Interconnect Transmitter 48
5.3. Realization and Characterization of SOI-Based Optical Interconnect Transmitter 55
5.4. Summary 61
Chapter 6. Conclusions and Future Works 62
References 68
Publication Lists 75
參考文獻 [1] H. Nasu, ”Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16, 1337-1346 ,2010.
[2] R. Dangel, C. Berger, R. Beyeler, L. Dellmann, M. Gmur, R. Hamelin, F. Horst, T. Lamprecht, T. Morf, S. Oggioni, M. Spreafico, and B. J. Offrein, ”Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. on Advan. Packag. 31, 759-767 ,2008.
[3] D. M. Kuchta, Y. H. Kwark, C. Schuster, C. Baks, C. Haymes, J. Schaub, P. Pepeljugoski, L. Shan, R. John, D. Kucharski, D. Rogers, M. Ritter, J. Jewell, L. A. Graham, K. Schrodinger, A. Schild, and H.-M. Rein, “120-Gb/s VCSEL-based parallel-optical interconnect and custom 120-Gb/s testing station,” IEEE J. Lightwave Technol., vol. 22, no. 9, pp. 2200–2212, Sep., 2004.
[4] L. A. Buckman-Windover, J. N. Simon, S. A. Rosenau, K. S. Giboney, G. M. Flower, L. W. Mirkarimi, A. Grot, B. Law, C.-K. Lin, A. Tandon, R. W. Gruhlke, H. Xia, G. Rankin, M. R. T. Tan, and D. W. Dolfi, “Parallel optical interconnects >100 Gb/s,” IEEE J. Lightwave Technol., vol. 22, no. 9, pp. 2055–2063, Sep., 2004.
[5] K. B. Yoon, I.-K. Cho, S. H. Ahn, M. Y. Jeong, D. J. Lee, Y. U. Heo, B. S. Rho, H.-H. Park, and B.-H. Rhee, “Optical backplane system using waveguide-embeddded PCBs and optical slots,” IEEE J. Lightwave Technol., vol. 22, no. 9, pp. 2119–2127, Sep., 2004.
[6] R. Dangel, U. Bapst, C. Berger, R. Beyeler, L. Dellmann, F. Horst, B. Offrein, and G.-L. Bona, “Development of a low-cost low-loss polymer waveguide technology for parallel optical interconnect applications,” in Tech. Dig. IEEE/LEOS Summer Topical Meetings, San Diego, CA, Jun., 2004.
[7] R. Dangel et al., “Polymer-waveguide-based board-level optical interconnect technology for datacom applications,” IEEE Trans. Adv. Packag., vol. 31, no. 4, pp. 759–766, Nov., 2008.
[8] F. E. Doany, C. L. Schow, C. Baks, R. Budd, Y.-J. Chang, P. Pepeljugoski, L. Schares, D. Kuchta, R. John, J. A. Kash, and F. Libsch,“160-Gb/s bidirectional parallel optical transceiver module for board level interconnects using a single-chip CMOS IC,” in Proc. 57th Electron. Compon. Technol. Conf., Reno, NV, May/Jun., pp. 1256–1261., 2007.
[9] F. E. Doany, C. L. Schow, J. A. Kash, C. Baks, R. Budd, D. M. Kuchta, P. Pepeljugoski, F. Libsch, R. Dangel, F. Horst, and B. J. Offrein“Waveguide-coupled parallel optical transceiver technology for Tb/sclass chip-to-chip data transmission,” in Proc. SPIE Photon. West, San Jose, CA, Jan. 19–24, 2008.
[10] F. E. Doany, C. L. Schow, C. W. Baks, D. M. Kuchta, P. Pepeljugoski, L. Schares, R. Budd, F. Libsch, R. Dangel, F. Horst, B. J. Offrein, and J. A. Kash, ”160 Gb/s bidirectional polymer-waveguide board-level optical interconnects using CMOS-based transceivers,” IEEE Trans. on Advan. Packag. 32, 345-359, 2009.
[11] T. T. H. Eng, J. Y. L. Ho, P. W. L. Chan, S. C. Kan, and G. K. L. Wong, ”Large core (>60 μm) SOI multimode waveguides for optical interconnect,” IEEE Photon.Technol. Lett. 8, 1196-1198, 1996.
[12] K. Kintaka, J. Nishii, J. Ohmori, Y. Imaoka, M. Nishihara, S. Ura, R. Satoh, and H. Nishihara, ” Integrated waveguide gratings for wavelength-demultiplexing of free space waves from guided waves,” Opt. Express 12, 3072-3078, 2004.
[13] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, ”Silicon optical modulators,” Nature Photonics 4, 518-526, 2010.
[14] J. Liu, J. Yu, S. Chen, and Z. Li, ”Integrated folding 4×4 optical matrix switch with total internal reflection mirrors on SOI by anisotropic chemical etching,” IEEE Photon.Technol. Lett. 17, 1187-1189, 2005.
[15] Y. Qian, S. Kim, J. Song, and G. Nordin, ”Compact and low loss silicon-on-insulator rib waveguide 90° bend,” Opt. Express, 14, 6020-6028, 2006.
[16] Y. Qian, J. Song, S. Kim, and G. P. Nordin, “Compact 90° trench-based splitter for silicon-on-insulator rib waveguides,” Opt. Express 15, 16712-16718, 2007.
[17] Jin Huang, Changzheng Sun*, Bing Xiong and Yi Luo, “Y-branch integrated dual wavelength laser diode for microwave generation by sideband injection locking,” Opt. Express 17, 20727-20734, 2009.
[18] H. C. Lan, H. L. Hsiao, C.C. Chang, C. H. Hsu, C. M. Wang, and M. L. Wu, ”Monolithic integration of elliptic-symmetry diffractive optical element on silicon-based 45° micro-reflector,” Opt. Express 17, 20938-20944, 2009.
[19] H. L. Hsiao, H. C. Lan, C.C. Chang, C. Y. Lee, S. P. Chen, C. H. Hsu, S. F. Chang, Y. S. Lin, F. M. Kuo, J. W. Shi, and M. L. Wu, ”Compact and passive-alignment 4-channel × 2.5-Gbps optical interconnect modules based on silicon optical benches with 45° micro-reflectors,” Opt. Express 17, 24250-24260, 2009.
[20] CENTERA’s official website: http://tw.centera-photonics.com/products/
[21] H. Park, A. W. Fang, S. Kodamaa, and J. E. Bowers, ”Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13, 9460–9464, 2005.
[22] L. Chen and M. Lipson, ”Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17, 7901–7906, 2009.
[23] L. Vivien, M. Rouviere, J.-M. Fedeli, D. M.-Morini, J.-F. Damlencourt, J. Mangeney, P. Crozat, L. E. Melhaoui, E. Cassan, X. L. Roux, D. Pascal, and S. Laval, ”High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide,” Opt. Express 15, 9843–9848, 2007.
[24] L. Chen, K. Preston, S. Manipatruni, and M. Lipson, ”Integrated GHz silicon photonic interconnect with micrometer-scale modulators and detectors,” Opt. Express 17, 15248–15256, 2009.
[25] Shi Cheng, Hanna Yousef, and Henrik Kratz, “79 GHz Slot Antennas Based on Substrate Integrated Waveguides (SIW) in a Flexible Printed Circuit Board,” IEEE Transactions on Antennas and Propagation 57, 64-71, 2009.
[26] Jing Xiao, Fuchuan Song, Kijeong Han, and Sang-Woo Seo, “Fabrication of CMOS-compatible optical filter arrays using gray-scale lithography,” J. Micromech. Microeng. 22, 025006 (2012).
[27] Xinyuan Dou, Xiaolong Wang, Haiyu Huang, Xiaohui Lin, Duo Ding, David Z. Pan, and Ray T. Chen, “Polymeric waveguides with embedded micro-mirrors formed by Metallic Hard Mold,” Opt. Express 18, 378–385, 2010.
[28] Aixia Lu, Jia Sun, Jie Jiang, and Qing Wan, “One-Shadow-Mask Self-Assembled Ultralow-Voltage Coplanar Homojunction Thin-Film Transistors,” IEEE Electron Device Letters 31, 1137-1139, 2010.
[29] C. Junge, S. Nickel, D. O’Shea, and A. Rauschenbeutel, “Bottle microresonator with actively
stabilized evanescent coupling,” Optics Letters, Vol. 36, Issue 17, pp. 3488-3490, 2011.
[30] O. Powell, “Erratum to"Single-Mode Condition for Silicon Rib Waveguides",” J. Lightwave
Technol. 20, 1851-1855, 2002.
[31] O. Powell, "Single-Mode Condition for Silicon Rib Waveguides", J. Lightwave Technol., vol. 20, pp. 1851-1855, Oct., 2002.
[32] S. P. Pogossian, L. Vescan and A. Vonsovici, "The single-mode condition for semiconductor rib waveguides with large cross section", J. Lightwave Technol., vol. 16, pp. 1851-53, 1998.
[33] B. E. Lemoff, M. E. Ali, G. Panotopoulos, G. M. Flower, B. Mahdavan, A. F. J. Levi, and D. W. Dolfi, “MAUI: Enabling fiber-to-processor with parallel multiwavelength optical interconnects,” IEEE J. Lightwave Technol. 22, 2043-2054, 2004.
[34] D. Kim, J. Shim, Y. C. Keh, and M. Park, “Design and fabrication of a transmitter optical subassembly (TOSA) in 10-Gb/s small-form-factor pluggable (XFP) transceiver,” IEEE J. Quantum Electron. 12, 776-782, 2006.
[35] R. Ammendola, A. Biagioni, G. Chiodi, O. Frezza, F. Lo Cicero, A. Lonardo, R. Lunadei, P. S. Paolucci, D. Rossetti, A. Salamon, G. Salina, F. Simula, L. Tosoratto, and P. Vicini, “High-speed data transfer with FPGAs and QSFP+ modules,” JINST, Aachen, Germany, 20-24 Sep., 2010.
[36] M. Aljada, K. E. Alameh, Y. T. Lee, and I. S. Chung, “High-speed (2.5 Gbps) reconfigurable inter-chip optical interconnects using opto-VLSI processors,” Opt. Express 14, 6823-6836, 2006.
[37] D.V. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, and J. S. Ahearn, “256-channel bidirectional optical interconnect using VCSELs and photodiodes on CMOS,” IEEE J. Lightwave Technol. 19, 1093-1103, 2001.
[38] S. Hiramatsu and T. Mikawa, “Optical design of active interposer for high-speed chip level optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 24, 927-934, 2006.
[39] X. Wang and R. T. Chen, “Fully embedded board level optical interconnects—from point-to-point interconnection to optical bus architecture,” Proc. SPIE 6899, 6899031-6899039, 2008
[40] L. Schares, J. A. Kash, F. E. Doany, C. L. Schow, C. Schuster, D. M. Kuchta, P. K. Pepeljugoski, J. M. Trewhella, C. W. Baks, R. A. John, L. Shan, Y. H. Kwark, R. A. Budd, P. Chiniwalla, F. R. Libsch, J. Rosner, C. K. Tsang, C. S. Patel, J. D. Schaub, R. Dangel, F. Horst, B. J. Offrein, D. Kucharski, D. Guckenberger, S. Hegde, H. Nyikal, C. K. Lin, A. Tandon, G. R. Trott, M. Nystrom, D. P. Bour, M. R. T. Tan,and D. W. Dolfi , “Terabus: Terabit/second-class card-level optical interconnect technologies,” IEEE J. Sel. Top. Quantum Electron. 12, 1032-1044, 2006.
[41] L. Wang, X. Wang, W. Jiang, J. Choi, H. Bi, and R. Chen, “45° polymer-based total internal reflection coupling mirrors for fully embedded intraboard guided wave optical interconnects,” Appl. Phys. Lett. 87, 141110, 2005.
[42] B. S. Rho, S. Kang, H. S. Cho, H.-H. Park, S.-W. Ha, and B.-H. Rhee, “PCB-compatible optical interconnection using 45-ended connection rods and via-holed waveguides,” IEEE J. Lightwave Technol. 22, 2128–2134, 2004.
[43] A. V. Krishnamoorthy, K. W. Goosen, L. M. F. Chirovsky, R. G. Rozier, P. Chandramani, W. S. Hobson, S. P. Hui, J. Lopata, J. A. Walker, and L. A. D’Asaro, “16×16 VCSEL array flip-chip bonded to CMOS VLSI circuit,” IEEE Photon. Technol. Lett. 12, 1073-1075, 2000.
[44] N. Hendrickx, J. Van Erps, E. Bosman, C. Debaes, H. Thienpont, and P. Van Daele, “Embedded micromirror inserts for optical printed circuit boards,” IEEE Photon. Technol. Lett. 20, 1727-1729, 2008.
[45] J. T. Kim, J. J. Ju, S. Park, M. S. Kim, S. K. Park, and M. H. Lee, ”Chip-to-chip optical interconnect using gold long-range surface plasmon polariton waveguides,” Opt. Express 16, 13133-13138, 2008.
[46] O. Demichel, L. Mahler, T. Losco, C. Mauro, R. Green, J. Xu, A. Tredicucci, and F. Beltram, “Surface plasmon photonic structures in terahertz quantum cascade lasers,” Opt. Express 14, 5335-5345, 2006.
[47] J. V. Campenhout, P. R. A. Binetti, P. R. Romeo, P. Regreny, C. Seassal, X. J. M. Leijtens, T. de Vries, Y. S. Oei, R. P. J. van Veldhoven, R. Notzel, L. Di Cioccio, J. M. Fedeli, M. K. Smit, D. Van Thourhout, and R. Baets, “Low-footprint optical interconnect on an SOI chip through heterogeneous integration of InP-based microdisk lasers and microdetectors,” IEEE Photon. Technol. Lett. 21, 522-524, 2009.
[48] S. K. Selvaraja, D. Vermeulen, M. Schaekers, E. Sleeckx, W. Bogaerts, G. Roelkens, P. Dumon, D. Van Thourhout, and R. Baets, “Highly efficient grating coupler between optical fiber and silicon photonic circuit,” in “Conference on lasers and electro-optics/international quantum electronics conference,” OSA Technical Digest, CTuC6., 2009.
[49] X. Dou, A. X. Wang, X. Lin, and R. T. Chen, “Photolithography-free polymer optical waveguide arrays for optical backplane bus,” Opt. Express 19, 14403-14410, 2011.
[50] Qianfan Xu, Sunil Sandhu, Michelle L. Povinelli, Jagat Shakya, Shanhui Fan, and Michal Lipson, “Experimental Realization of an On-Chip All-Optical Analogue to Electromagnetically Induced Transparency,” Phys. Rev. Lett. 96, 123901-123904, 2006.
[51] Vilson R. Almeida, Carlos A. Barrios, Roberto R. Panepucci & Michal Lipson, “ All-optical control of light on a silicon chip,” Nature 431, 1081-1084, 2004.
[52] Pollnau, M., Romanyuk, Y.E., Gardillou, F., Borca, C.N., Griebner, U., Rivier, S., Petrov, V., “Double Tungstate Lasers: From Bulk Toward On-Chip Integrated Waveguide Devices,” IEEE J. Selected topics in Quantum Electronics, 13, 661-671, 2007.
[53] Levy, M., “The on-chip integration of magnetooptic waveguide isolators,” IEEE J. Selected topics in Quantum Electronics, 8, 1300-1306, 2002.
[54] DeRose, C.T., Mathine, D. , Enami, Y., Norwood, R.A., Jingdong Luo, Jen, A.K.-Y., Peyghambarian, N., “ Electrooptic Polymer Modulator With Single-Mode to Multimode Waveguide Transitions,” IEEE PHOTONIC TECH L., 20, 1051-1053, 2008.
[55] Chunfang Ye, Keith Kamysiak, Amy Sullivan, and Robert Mcleod, “Single Mode 3D Diffusive Photopolymer Optics for Optical Integrated Circuits,” in IPRSN, Jun., 2012.
[56] Ying Huang, P. Shum, Chinlon Lin, “Proposal for loss reduction and output enhancement of silicon Raman laser using bi-directional pumping scheme,” Opt. Comm. 283, 1389-1393, 2010.
[57] Hino, T., Kuribayashi, R., Hashimoto, Y., Sugimoto, T., Ushioda, J., Sasaki, J., Ogura, I., Hatakeyama, I., Kurata, K., “ A 10 Gbps x 12 channel pluggable optical transceiver for high-speed interconnections,” in Electronic Components and Technology Conference, 1838-1843, 2008.
指導教授 伍茂仁(Mount-Learn Wu) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明