博碩士論文 100226051 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.220.68.141
姓名 李佩紋(Pei-wen Lee)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 以週期性結構提升矽薄膜雙面太陽電池效能的模擬研究
(A Simulation Study for the Periodic-Structured Amorphous Silicon Thin Film Bifacial Solar)
相關論文
★ 富含矽奈米結構之氧化矽薄膜之成長與其特性研究★ 導波共振光學元件應用於生物感測器之研究
★ 具平坦化側帶之超窄帶波導模態共振濾波器研究★ 低溫成長鍺薄膜於單晶矽基板上之研究
★ 矽鍺薄膜及其應用於光偵測器之研製★ 低溫製備磊晶鍺薄膜及矽基鍺光偵測器
★ 整合慣性感測元件之導波矽基光學平台研究★ 矽基光偵測器研製與整合於光學波導系統
★ 光學滑鼠用之光學元件設計★ 高效率口袋型LED 投影機之研究
★ 在波長為532nm時摻雜鉬之鈦酸鋇單晶性質研究★ 極化繞射光學元件在高密度光學讀取頭上之應用研究
★ 不同溫度及波長之摻銠鈦酸鋇單晶性質研究★ 經氣氛處理之鈦酸鋇單晶其光折變性質及電荷移轉與波長的關係
★ 在不同溫度時氣氛處理鈦酸鋇單晶性質之比較★ 摻銠鈦酸鋇單晶的氧化還原與光折變性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近幾年來,各種粗糙化結構對矽基太陽能電池所產生的影響引起廣泛的研究。在本論文中,我們利用二維模擬軟體 Sentaurus TCAD 及 Lumerical FDTD,探討平面非晶矽薄膜太陽能電池吸收層厚度對於電性特性的影響,利用 Lumerical FDTD 視各種不同的微結構條件對於非晶矽薄膜太陽能電池在光性特性上的影響。利用 Sentaurus TCAD 模擬平面電池(Glass/ TCO/ a-Si:H(p)/ a-Si:H(i)/ a-Si:H(n)/TCO/ EVA)不同的本質層厚度 a-Si:H(i),得知薄的本質層厚度(100 nm)可使電池的短路電流值達 5.55mA/cm2,外部效率達 14%。由電性表現的關係結果,發現本質層厚度越厚,可使較多的光生電子電洞對被收集(I=500nm, Jsc=8.78mA/cm2),然而事實上其高比例的缺陷態密度也會隨之增加,且光衰退的影響會更趨明顯與嚴重。為使較薄的本質層(I=100nm)模型達到更好的效率,本論文利用 Lumerical FDTD 軟體以建立微結構的方式彌補其與較厚本質層模型在短路電流上的差異。就單層玻璃介面微結構而言,隨著結構高度(H)的增加,特徵峰值大小會逐漸減低,故就抗反射效果而言,選用較小的微結構高度如 0.2μm 或 0.4μm,次波長等級的周期(380nm
摘要(英) Recently, the effect of few kinds of texturing structures on solar cell has been received intense attention and plenty of researches. In this thesis, we use Sentaurus
TCAD and Lumerical FDTD to study the effect of intrinsic layer thickness and different microstructure on amorphous silicon thin film solar cell. First of all, we establish the plane type a-Si solar cells (Glass/ TCO/ a-Si:H(p)/ a-Si:H(i)/ a-Si:H(n)/ TCO/ EVA) in the two programs. By the utilization in Sentaurus TCAD, we find the short circuit
current in the thinner intrinsic layer (100nm) model achieves 5.55mA/cm2, while the external quantum efficiency achieves 14%. Additionally, if the high-defected intrinsic
layer gets thicker, there are more photogenerated carriers but higher defect density of state but more serious light degradation. Replacing that by thinner intrinsic layer and
modulating the microstructure of the solar cell in Lumerical FDTD are the ways to compensate for the lack of short circuit current brought from the thinner thickness. Reflection peak of textured glass (microstructure and glass film) gets reduced by the increasing structure height. For being the superior anti-reflection, sub-wavelength microstructure would be a good choice as choosing small structure height. For the muti-layer textured solar cell, how to get balanced between superior AR and low scatter dispersion at the back contact is a crucial topic. The solar cell with 300nm intrinsic layer has its short circuit current achieving 18.67mA/cm2 and enhancement 49% with P=0.8μm and H=0.8μm. Whereas the solar cell with 100nm
intrinsic layer has its short circuit current 18.39mA/cm2 and enhancement 73% with P=0.2μm and H=0.5μm. From the result of external quantum efficiency, it is found that the thinner intrinsic layer performs the more obvious enhancement effect.
關鍵字(中) ★ 非晶矽薄膜太陽能電池
★ 有限時域差分法
★ 次波長
★ 粗糙化
★ 微結構
關鍵字(英) ★ finite difference time domain
★ sub-wavelength
★ microstructure
★ texturing
★ amorphous silicon thin film solar cell
論文目次 碩士論文電子檔授權書 ............................................................................................. i
碩士論文電子檔授權書 ............................................................................................ ii
論文指導教授推薦書 ............................................................................................... iii
論文口試委員審定書 ............................................................................................... iv
中文摘要................................................................................................................... v
ABSTRACT ............................................................................................................ vii
ACKOWLEDGMENT ............................................................................................. vii
CONTENTS ........................................................................................................... viii
LIST OF FIGURES................................................................................................... xi
LIST OF TABLES..................................................................................................... xi
Chapter 1 INTRODUCTION.............................................................................. 1
1.1 Background.............................................................................................. 1
1.2 Objective and Approach............................................................................ 2
1.3 Literature ................................................................................................. 3
1.4 Thesis Organization .................................................................................. 7
Chapter 2 PHOTOVOLTAICS REVIEW........................................................... 8
2.1 Solar Cells Composition ........................................................................... 8
2.2 Solar Cells Operation.............................................................................. 10
2.3 Defect in Amorphous Silicon .................................................................. 12
2.4 Refractive Index in Material.................................................................... 16
2.5 Performance ........................................................................................... 18
2.5.1 Equivalent Circuit in Solar Cell...................................................... 18
2.5.2 I-V Curve ...................................................................................... 19ix
2.5.3 Quantum Efficiency....................................................................... 20
2.5.4 Photogeneration............................................................................. 21
2.5.5 Recombination .............................................................................. 22
Chapter 3 SIMULATION MODELING ........................................................... 24
3.1 Plane Solar Cell in Sentaurus TCAD ....................................................... 25
3.2 Physical Structures in Lumerical FDTD .................................................. 26
3.2.1 Single Textured Glass Film ............................................................ 26
3.2.2 Conformal Textured Solar Cell....................................................... 27
3.3 Solver Mechanism in Lumerical FDTD ................................................... 29
3.4 Adopted Equation for Layer Absorption .................................................. 31
3.5 Light Source Setting in Lumerical FDTD ................................................ 32
3.5.1 CW from time domain pulse .......................................................... 32
3.5.2 AM1.5 for Layer Jsc ...................................................................... 33
Chapter 4 RESULTS AND DISCUSSION ........................................................ 35
4.1 Plane Solar Cell...................................................................................... 35
4.1.1 Target............................................................................................ 35
4.1.2 Steps ............................................................................................. 36
4.1.3 Results .......................................................................................... 36
4.2 Optical Property- Single Textured Glass Film .......................................... 40
4.2.1 Target............................................................................................ 40
4.2.2 Steps ............................................................................................. 41
4.2.3 Results .......................................................................................... 41
4.2.4 Analysis ........................................................................................ 46
4.3 Optical Property- Conformal Structures (a-Si(i)=100nm, 300nm)............. 48
4.3.1 Target............................................................................................ 484.3.2 Steps ............................................................................................. 49
4.3.3 Results .......................................................................................... 49
4.3.4 Analysis ........................................................................................ 56
Chapter 5 CONCLUSIONS .............................................................................. 62
REFERENCE .......................................................................................................... 65
參考文獻 [1] M. Cid, N. Stem, C. Brunetti, A. F. Beloto, and C. A. S. Ramos, "Improvements
in anti-reflection coatings for high-efficiency silicon solar cells," Surface &
Coatings Technology 106, 117-120 (1998).
[2] O. Isabella, F. Moll, J. Krc, and M. Zeman, "Modulated surface textures using
zinc-oxide films for solar cells applications," Physica Status Solidi a-Applications
and Materials Science 207, 642-646 (2010).
[3] R. Dewan, M. Marinkovic, R. Noriega, S. Phadke, A. Salleo, and D. Knipp,
"Light trapping in thin-film silicon solar cells with submicron surface texture,"
Optics Express 17, 23058-23065 (2009)
[4] R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, "Optical enhancement and losses
of pyramid textured thin-film silicon solar cells," Journal of Applied Physics 110
(2011).
[5] A. Campa, O. Isabella, R. van Erven, P. Peeters, H. Borg, J. Krc, M. Topic, and M.
Zeman, "Optimal design of periodic surface texture for thin-film a-Si:H solar
cells," Progress in Photovoltaics 18, 160-167 (2010).
[6] P. Obermeyer, C. Haase, and H. Stiebig, "Advanced light trapping management
by diffractive interlayer for thin-film silicon solar cells," Applied Physics Letters
92 (2008).
[7] R. Dewan, V. Jovanov, C. Haase, H. Stiebig, and D. Knipp, "Simple and Fast
Method to Optimize Nanotextured Interfaces of Thin-Film Silicon Solar Cells,"
Applied Physics Express 3 (2010).
[8] A. V. Shah, H. Schade, and M. Vanecek, et al., “Thin-film Silicon Solar Cell
Technology,” Progress In Photovoltaics: Research And Applications 12, 66
113-142(2004).
[9] Jenny Nelson, “The Physics of Solar Cells”, Imperial College Press, UK (2003)
[10] A. G. Kazanskii, "Staebler-Wronski Effect in Phosphorus-Doped Hydrogenated
Amorphous-Silicon," Soviet Physics Semiconductors-Ussr 24, 915-917 (1990).
[11] Dennis M. Sullivan, “Electromagnetic simulation using the FDTD method”, New
York: IEEE Press Series (2000).
[12] Allen Taflove, “Computational Electromagnetics: The Finite-Difference
Time-Domain Method”, Boston: Artech House (2005).
[13] L. Li, “New formulation of the Fourier modal method for crossed surface-relief
gratings,” J. Opt. Soc. Am. A 14, 2758-2767 (1997).
[14] M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of
metallic surface-relief gratings,” J. Opt. Soc. Am. A 3, 1780-1787 (1986).
[15] K. S. Yee, “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Ant. Prop. 14, 302-307
(1966).
[16] C. Pflaum, “Simulation of light in-coupling at oblique angles in thin-film silicon
solar cells”, 24 th
European Photovotaic Solar Energy Conference (2009)
[17] 黃惠良,「太陽能電池」, 五南出版社(2008)
[18] 趙建昌, 「表面電漿增益矽薄膜太陽能電池之微光學與光電模擬」, 中央大學
光電所博士論文(2010)
[19] 蔡宛宸, 「微晶矽薄膜太陽能電池之元件模擬與分析」, 中央大學光電所碩士
論文(2011)
[20] T. Yagi, Y. Uraoka, and T. Fuyuki, "Ray-trace simulation of light trapping in
silicon solar cell with texture structures," Solar Energy Materials and Solar Cells 90, 2647-2656 (2006).
[21] W. Beyer, J. Hupkes, and H. Stiebig, "Transparent conducting oxide films for thin
film silicon photovoltaics," Thin Solid Films 516, 147-154 (2007).
[22] M. Peters, M. Rudiger, B. Blasi, and W. Platzer, "Electro-optical simulation of
diffraction in solar cells," Optics Express 18, A584-A593 (2010).
[23] R. Dewan, I. Vasilev, V. Jovanov, and D. Knipp, "Optical enhancement and losses
of pyramid textured thin-film silicon solar cells," Journal of Applied Physics 110
(2011).
指導教授 張正陽(Jenq-yang Chang) 審核日期 2012-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明