博碩士論文 942406001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:18.119.120.120
姓名 丁挺洲(Ting-Jou Ding)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 實驗室晶片之整合設計、製作、操控與測試
(Integration of Design, Implementation, manipulation, and Testing in Lab-on-a-chip)
相關論文
★ 新型光電生化感測器之分析與研究★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法
★ 特定色度背光模組零組件之光學特性評估★ 電子紙增亮分析與模擬設計
★ 生物晶片螢光檢測之光源模型探討★ 介電電濕式數位微流體驅動系統之探討
★ 發光二極體照明系統之色彩特性優化設計★ 以EWOD為基礎的長鏈高分子原位合成器
★ 色盲量化測試系統之研究★ 可調式自然日光模擬光源之製作
★ 演色性評估之相關性指標★ 亞精胺影響下DNA構形與DNA碎片分佈之研究
★ 生物晶片之螢光光學檢測★ 生物晶片螢光分析之微光學模組
★ 光學式生化反應即時偵測系統★ 微液滴驅動之研究與探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) EWOD (electrowetting on dielectric)微流體系統相對於傳統連續流流體系統的優勢在於非連續流流體的架構與虛擬流道的設計。非連續流流體與虛擬流道的架構使流體不再需要傳統的驅動幫浦、控制閥門與固定式微流道等元件,即可進行流體的驅動。本文以EWOD微流體系統為主體架構所組成之實驗室晶片,分別探討此晶片系統操控在少量、多樣性上的應用、整合感測器的能力,與在此流體系統中自合成感測器的可行性。
首先以胺基酸序列合成實驗(生物探針的製作),成功地證明此實驗室整合型晶片適用於少量、多樣性等領域的彈性應用。由ESCA(electron spectroscopy for chemical analysis)量測數據結果顯示,此實驗室整合型晶片接合三段亮氨酸序列以及亮胺酸-苯丙胺酸序的接合率分別為63.9 %與77.2 %,顯現其高合成效率。
GMR (guided-mode resonance)感測器與EWOD微流體的整合,是本文另一重點,單點與多點兩種模式。具有架構簡單、製作容易、成本低、高通量與具有微小化潛力等特點,使得實驗室整合型晶片的應用將更廣泛。GMR感測器的製作採用軟模壓印的技術進行。其製程簡單、成本低且適合大量、大面積的複製,且可在短時間內完成製作。在程序逐步操控過程,透過LabView所開發的自動控制程式,成功達到驅動與量測的自動化。此外,由於同調光源經過流道後會產生干涉現象而影響穿透光譜中共振波長的判讀。通過空間頻率的低通濾波方法,可消除濾除干涉現象,提高感測器的靈敏度與準確度。藉由不同濃度蔗糖溶液的測試,此整合系統的靈敏度經測試約為17.4 nm/R.I.U.。
以實驗室晶片的設計概念而言,樣品或試劑匯入後的所有實驗步驟皆應該在晶片中完成,其中也包含可適應各種反應需求的感測器製作。EWOD微流體系統為實驗室晶片中最重要的基礎架構,亦必須具有合成感測器的能力。以EWOD微流體系統結合奈米球自組裝的特性與自組裝分子膜(Self-Assembled Monolayer)的技術可成功以500nm粒徑的奈米球排列出週期為為20.7μm,線寬為5.4μm類似GMR感測器的一維週期性結構。其週期與結構可依不同尺寸的奈米球與所需的圖案進行調整,亦可應用於其他類型感測器的製作。在流體系統中,自組裝所需感測器乃是一個全新的概念。此概念對實驗室晶片的設計模式,提供一個新的想法。
摘要(英) Electrowetting on dielectric (EWOD) microfluidic system takes more advantages over than the conventional continuous fluidic systems on the discrete droplets and the virtual fluid channel construction. the design of discrete droplets and the virtual fluidic channels can operate microfluidics without the pump, the valves, and the fixed microchannels. In this thesis, it is explored with the integration of the actuators and the sensors in a Lab-on-a-chip system to fit the wide reuqests in need of small volume but high diversity of interaction smaples in many applications.
Actually, the integration Lab-on-a-chip system is consisted of micro-sensors, micro-actuators, and process controllers. With consideration of the easy integration, the guided-mode resonance (GMR) sensors are choosen as being the micro-sensors, and the EWOD microfluidic drivers as being the micro-actuators.
It is demonstrated that the synthesis of peptides is performed on the integration Lab-on-a-chip with high production efficiency. With aids of ESCA, the production efficiency is found around 65%~75%.
Besides, it is also successfully demonstrated the microsensors can be further manufactered in the Lab-on-a-chip system itself. The periodic structure in the GMR sensors is easily and efficiently produced by combining the EWOD actuating and the self-synthesis technology. As a result, it proposes one new Lab-on-a-chip that is not only with combination amoung micro-sensors, micro-actuators, and process controllers, but also the micro-sensors needed are fabricated on site by the Lab-on-a-chip itself.
關鍵字(中) ★ 胺基酸
★ 奈米球
★ 實驗室晶片
★ 電濕式
★ 導模共振
關鍵字(英) ★ Guided-mode Resonance
★ Electrowetting
★ amino acid
★ Lab-on-a-chip
★ nanosphere
論文目次 摘 要 iv
Abstract vi
目 錄 viii
圖 目 錄 x
表 目 錄 xxi
第一章 緒論 1
1-1實驗室晶片 1
1-2微流體技術 3
1-3 研究動機 10
第二章 驅動與感測 12
2-1 表面張力 12
2-2 使用表面張力的微驅動器 13
2-3感測器-導模共振 21
第三章 胺基酸序列合成 23
3-1胺基酸序列合成 23
3-2 連續流流體系統 27
3-2-1元件製作 27
3-3 EWOD微流體系統 41
3-4結果與討論 68
3-5 結論 77
第四章 感測器的整合 78
4-1 流體晶片元件設計 78
4-2 GMR感測器設計 80
4-3 EWOD流體晶片製作 81
4-4 實驗設置 100
4-5整合晶片測試與討論 108
4-5-1 單點式 108
4-5-2 多點式 109
4-5-3 量測結果 110
4-6 結論 118
第五章 自合成感測器 120
5-1奈米球自組裝技術 121
5-1-1自然滴製法 (Drop-coating) 122
5-1-2旋轉塗佈法 (Spin-coating) 122
5-1-3 電泳法(Electrophoresis) 123
5-1-4 自組裝分子膜 124
5-2 元件設計與製作 124
5-2-1 操控電極板 127
5-2-2 奈米球自組裝基板 130
5-3 實驗設置 133
5-3-1系統架設 133
5-3-2 液滴驅動速度 138
5-4奈米球自組裝實驗 140
5-4-1單層鋪排 140
5-5結論 151
第六章 結論 153
參考文獻: 155
參考文獻 1. J. H. Kang, and J. K. Park, "Development of a microplate reader compatible microfluidic device for enzyme assay," Sensors and actuators. B, Chemical 107, 980-985 (2005).
2. Y. Huang, and B. Rubinsky, "Flow-through micro-electroporation chip for high efficiency single-cell genetic manipulation," Sensors and Actuators A: Physical 104, 205-212 (2003).
3. A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing," Sensors and actuators B: Chemical 1, 244-248 (1990).
4. J. West, M. Becker, S. Tombrink, and A. Manz, "Micro total analysis systems: latest achievements," Anal. Chem 80, 4403-4419 (2008).
5. P. S. Dittrich, K. Tachikawa, and A. Manz, "Micro total analysis systems. Latest advancements and trends," Analytical Chemistry 78, 3887 (2006).
6. A. Chandrasekaran, and M. Packirisamy, "Integrated micro-total analysis system (μTAS) for biophotonic enzymatic detections," (2010), p. 75551D.
7. J. V. Jokerst, J. W. Jacobson, B. D. Bhagwandin, P. N. Floriano, N. Christodoulides, and J. T. McDevitt, "Programmable nano-bio-chip sensors: analytical meets clinical," Analytical Chemistry 82, 1571-1579 (2010).
8. http://www.gene-quantification.de/lab-on-chip.html
9. http://en.wikipedia.org/wiki/Lab-on-a-chip
10. M. A. Burns, B. N. Johnson, S. N. Brahmasandra, K. Handique, J. R. Webster, M. Krishnan, T. S. Sammarco, P. M. Man, D. Jones, and D. Heldsinger, "An integrated nanoliter DNA analysis device," Science 282, 484-487 (1998).
11. M. J. Madou, Fundamentals of microfabrication: the science of miniaturization (CRC, 2002).
12. G. T. A. Kovacs, Micromachined transducers sourcebook (WCB/McGraw-Hill New York, NY, 1998).
13. D. Armani, C. Liu, and N. Aluru, "Re-configurable fluid circuits by PDMS elastomer micromachining," (Ieee, 1999), pp. 222-227.
14. L. Yobas, M. A. Huff, F. J. Lisy, and D. M. Durand, "A novel bulk micromachined electrostatic microvalve with a curved-compliant structure applicable for a pneumatic tactile display," Microelectromechanical Systems, Journal of 10, 187-196 (2001).
15. A. Manz, and H. Becker, Microsystem technology in chemistry and life sciences (Springer Verlag, 1999).
16. G. Beni, S. Hackwood, and J. Jackel, "Continuous electrowetting effect," Applied Physics Letters 40, 912-914 (1982).
17. C. M. Ho, "Fluidics-the link between micro and nano sciences and technologies," (IEEE, 2001), pp. 375-384.
18. . M. Vallet, B. Berge, and L. Vovelle, "Electrowetting of water and aqueous solutions on poly (ethylene terephthalate) insulating films," Polymer 37, 2465-2470 (1996).
19. G. Beni, and M. Tenan, "Dynamics of electrowetting displays," Journal of Applied Physics 52, 6011-6015 (1981).
20. J. Jackel, S. Hackwood, J. Veselka, and G. Beni, "Electrowetting switch for multimode optical fibers," Applied optics 22, 1765-1770 (1983).
21. G. Beni, and S. Hackwood, "Electro‐wetting displays," Applied Physics Letters 38, 207-209 (1981).
22. J. Jackel, S. Hackwood, and G. Beni, "Electrowetting optical switch," Applied Physics Letters 40, 4-5 (1982).
23. M. Vallet, M. Vallade, and B. Berge, "Limiting phenomena for the spreading of water on polymer films by electrowetting," The European Physical Journal B-Condensed Matter and Complex Systems 11, 583-591 (1999).
24. V. Srinivasan, V. K. Pamula, and R. B. Fair, "An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids," Lab Chip 4, 310-315 (2004).
25. A. Banerjee, E. Kreit, Y. Liu, J. Heikenfeld, and I. Papautsky, "Reconfigurable virtual electrowetting channels," Lab Chip 12, 758-764 (2012).
26. L. Li, C. Liu, H. R. Peng, and Q. H. Wang, "Optical switch based on electrowetting liquid lens," Journal of Applied Physics 111, 103103-103103-103104 (2012).
27. J. Liu, M. Wang, S. Chen, and M. O. Robbins, "Uncovering Molecular Mechanisms of Electrowetting and Saturation with Simulations," Physical Review Letters 108, 216101 (2012).
28. R. de Ruiter, P. Wennink, A. G. Banpurkar, M. H. G. Duits, and F. Mugele, "Use of electrowetting to measure dynamic interfacial tensions of a microdrop," Lab on a Chip (2012).
29. T. Krupenkin, J. A. Taylor, and S. Manakasettharn, "Reverse electrowetting--a new approach to high-power harvesting of mechanical energy," Bulletin of the American Physical Society 57 (2012).
30. L. Y. Yeo, and H. C. Chang, "Electrowetting films on parallel line electrodes," Physical Review E 73, 011605 (2006).
31. J. Theisen, and L. A. Davoust, "Dual-frequency electrowetting: application to drop evaporation gauging within a digital microsystem," Langmuir (2012).
32. T. Krupenkin, and J. A. Taylor, "Corrigendum: Reverse electrowetting as a new approach to high-power energy harvesting," Nature Communications 3, 659 (2012).
33. P. C. Hiemenz, and R. Rajagopalan, Principles of colloid and surface chemistry (CRC, 1997).
34. T. K. Jun, "Valveless pumping using traversing vapor bubbles in microchannels," Journal of Applied Physics 83, 5658 (1998).
35. T. S. Sammarco, and M. A. Burns, "Thermocapillary pumping of discrete drops in microfabricated analysis devices," AIChE Journal 45, 350-366 (1999).
36. H. Matsumoto, and J. E. Colgate, "Preliminary investigation of micropumping based on electrical control of interfacial tension," (IEEE, 1990), pp. 105-110.
37. B. Berge, "Electrocapillarity and wetting of insulator films by water," Comptes Rendus De L Academie Des Sciences Serie II 317, 157-163 (1993).
38. M. Prins, W. Welters, and J. Weekamp, "Fluid control in multichannel structures by electrocapillary pressure," Science 291, 277-280 (2001).
39. S. K. Cho, H. Moon, and C. J. Kim, "Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits," Microelectromechanical Systems, Journal of 12, 70-80 (2003).
40. W. Tan, X. Fang, J. Li, and X. Liu, "Molecular beacons: a novel DNA probe for nucleic acid and protein studies," CHEMISTRY-WEINHEIM-EUROPEAN JOURNAL- 6, 1107-1111 (2000).
41. E. Ortiz, G. Estrada, and P. Lizardi, "PNA molecular beacons for rapid detection of PCR amplicons," Molecular and Cellular Probes 12, 219-226 (1998).
42. Z. Li, Y. Chen, X. Li, T. Kamins, K. Nauka, and R. Williams, "Sequence-specific label-free DNA sensors based on silicon nanowires," Nano Letters 4, 245-247 (2004).
43. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, "Label-free, single-molecule detection with optical microcavities," Science 317, 783-787 (2007).
44. E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-Evans, A. D. Hamilton, D. A. LaVan, T. M. Fahmy, and M. A. Reed, "Label-free immunodetection with CMOS-compatible semiconducting nanowires," Nature 445, 519-522 (2007).
45. K. Ramanathan, and B. Danielsson, "Principles and applications of thermal biosensors," Biosensors and Bioelectronics 16, 417-423 (2001).
46. G. Nenninger, P. Tobiska, J. Homola, and S. Yee, "Long-range surface plasmons for high-resolution surface plasmon resonance sensors," Sensors and actuators B: Chemical 74, 145-151 (2001).
47. S. Patskovsky, A. V. Kabashin, M. Meunier, and J. H. T. Luong, "Silicon-based surface plasmon resonance sensing with two surface plasmon polariton modes," Applied optics 42, 6905-6909 (2003).
48. G. Jin, P. Tengvall, I. Lundström, and H. Arwin, "A biosensor concept based on imaging ellipsometry for visualization of biomolecular interactions," Analytical biochemistry 232, 69-72 (1995).
49. Y. Nie, L. Wang, Z. Wang, and C. Lai, "Beam selector dependent on incident angle by guided-mode resonant subwavelength grating," Optical Engineering 41, 2966 (2002).
50. R. W. Wood, "On a remarkable case of uneven distribution of light in a diffraction grating spectrum," Proceedings of the Physical Society of London 18, 269 (1902).
51. R. Magnusson, and S. Wang, "New principle for optical filters," Applied Physics Letters 61, 1022-1024 (1992).
52. S. Wang, and R. Magnusson, "Theory and applications of guided-mode resonance filters," Applied optics 32, 2606-2613 (1993).
53. S. Wang, R. Magnusson, J. S. Bagby, and M. Moharam, "Guided-mode resonances in planar dielectric-layer diffraction gratings," JOSA A 7, 1470-1474 (1990).
54. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, "A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions," Sensors and actuators B: Chemical 85, 219-226 (2002).
55. C. F. R. Mateus, M. C. Y. Huang, P. Li, B. T. Cunningham, and C. J. Chang-Hasnain, "Compact label-free biosensor using VCSEL-based measurement system," Photonics Technology Letters, IEEE 16, 1712-1714 (2004).
56. B. T. Cunningham, P. Li, S. Schulz, B. Lin, C. Baird, J. Gerstenmaier, C. Genick, F. Wang, E. Fine, and L. Laing, "Label-free assays on the BIND system," Journal of biomolecular screening 9, 481-490 (2004).
57. B. Lin, P. Li, and B. T. Cunningham, "A label-free biosensor-based cell attachment assay for characterization of cell surface molecules," Sensors and actuators B: Chemical 114, 559-564 (2006).
58. D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, "Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal," Applied Physics Letters 89, 123113 (2006).
59. I. D. Block, L. L. Chan, and B. T. Cunningham, "Large-area submicron replica molding of porous low-< i> k dielectric films and application to photonic crystal biosensor fabrication," Microelectronic engineering 84, 603-608 (2007).
60. C. J. Choi, and B. T. Cunningham, "A 96-well microplate incorporating a replica molded microfluidic network integrated with photonic crystal biosensors for high throughput kinetic biomolecular interaction analysis," Lab Chip 7, 550-556 (2007).
61. C. J. Choi, I. D. Block, B. Bole, D. Dralle, and B. T. Cunningham, "Label-free photonic crystal biosensor integrated microfluidic chip for determination of kinetic reaction rate constants," Sensors Journal, IEEE 9, 1697-1704 (2009).
62. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, "A label-free photonic crystal biosensor imaging method for detection of cancer cell cytotoxicity and proliferation," Apoptosis 12, 1061-1068 (2007).
63. L. L. Chan, B. T. Cunningham, P. Y. Li, and D. Puff, "Self-referenced assay method for photonic crystal biosensors: application to small molecule analytes," Sensors and actuators B: Chemical 120, 392-398 (2007).
64. C. J. Choi, and B. T. Cunningham, "Single-step fabrication and characterization of photonic crystal biosensors with polymer microfluidic channels," Lab Chip 6, 1373-1380 (2006).
65. L. L. Chan, S. L. Gosangari, K. L. Watkin, and B. T. Cunningham, "Label-free imaging of cancer cells using photonic crystal biosensors and application to cytotoxicity screening of a natural compound library," Sensors and actuators B: Chemical 132, 418-425 (2008).
66. K. Wong, H. Yip, Y. Luo, K. Wong, W. Lau, K. Low, H. Chow, Z. Gao, W. Yeung, and C. Chang, "Blocking reactions between indium-tin oxide and poly (3, 4-ethylene dioxythiophene): poly (styrene sulphonate) with a self-assembly monolayer," Applied Physics Letters 80, 2788 (2002).
67. E. B. Troughton, C. D. Bain, G. M. Whitesides, R. G. Nuzzo, D. L. Allara, and M. D. Porter, "Monolayer films prepared by the spontaneous self-assembly of symmetrical and unsymmetrical dialkyl sulfides from solution onto gold substrates: structure, properties, and reactivity of constituent functional groups," Langmuir 4, 365-385 (1988).
68. R. Maoz, E. Frydman, S. Cohen, and J. Sagiv, "Constructive Nanolithography: Site‐Defined Silver Self‐Assembly on Nanoelectrochemically Patterned Monolayer Templates," Advanced Materials 12, 424-429 (2000).
69. R. Maoz, S. R. Cohen, and J. Sagiv, "Nanoelectrochemical Patterning of Monolayer Surfaces: Toward Spatially Defined Self‐Assembly of Nanostructures," Advanced Materials 11, 55-61 (1999).
70. G. Decher, J. Hong, and J. Schmitt, "Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces," Thin solid films 210, 831-835 (1992).
71. R. P. Andres, J. D. Bielefeld, J. I. Henderson, D. B. Janes, V. R. Kolagunta, C. P. Kubiak, W. J. Mahoney, and R. G. Osifchin, "Self-assembly of a two-dimensional superlattice of molecularly linked metal clusters," Science 273, 1690 (1996).
72. G. Decher, and J. D. Hong, "Buildup of ultrathin multilayer films by a self‐assembly process, 1 consecutive adsorption of anionic and cationic bipolar amphiphiles on charged surfaces," (Wiley Online Library, 1991), pp. 321-327.
73. A. K. Boal, F. Ilhan, J. E. DeRouchey, T. Thurn-Albrecht, T. P. Russell, and V. M. Rotello, "Self-assembly of nanoparticles into structured spherical and network aggregates," Nature 404, 746-748 (2000).
74. http://en.wikipedia.org/wiki/Surface_tension.
75. http://en.wikipedia.org/wiki/Gibbs_free_energy.
76. J. Lee, and C. J. Kim, "Surface-tension-driven microactuation based on continuous electrowetting," Microelectromechanical Systems, Journal of 9, 171-180 (2000).
77. T. A. McMahon, and J. T. Bonner, On size and life (Scientific American Library New York, 1983).
78. R. Aveyard, and D. A. Haydon, An introduction to the principles of surface chemistry (Cambridge University Press, 1973).
79. R. J. Pugh, and L. Bergström, Surface and colloid chemistry in advanced ceramics processing (CRC, 1994).
80. E. D. Shchukin, Colloid and surface chemistry (Elsevier Science, 2001).
81. A. E. Childress, and M. Elimelech, "Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes," Journal of Membrane Science 119, 253-268 (1996).
82. G. A. Somorjai, and Y. Li, Introduction to surface chemistry and catalysis (John Wiley & Sons Inc, 2010).
83. F. A. Cotton, and G. Wilkinson, Advanced inorganic chemistry: a comprehensive text (Wiley New York, 1980).
84. G. Lippmann, "Relations entre les phénomenes électriques et capillaires," (Gauthier-Villars, 1875).
85. J. O. M. Bockris, and A. K. N. Reddy, Modern electrochemistry (Springer, 2000).
86. N. K. Adam, "The physics and chemistry of surfaces," (1968).
87. J. Lee, H. Moon, J. Fowler, T. Schoellhammer, and C. J. Kim, "Electrowetting and electrowetting-on-dielectric for microscale liquid handling," Sensors and Actuators A: Physical 95, 259-268 (2002).
88. H. Liu, S. Dharmatilleke, D. K. Maurya, and A. A. O. Tay, "Dielectric materials for electrowetting-on-dielectric actuation," Microsystem Technologies 16, 449-460 (2010).
89. D. Chatterjee, B. Hetayothin, A. R. Wheeler, D. J. King, and R. L. Garrell, "Droplet-based microfluidics with nonaqueous solvents and solutions," Lab Chip 6, 199-206 (2006).
90. C. C. Cho, R. Wallace, and L. Files-Sesler, "Patterning and etching of amorphous teflon films," Journal of electronic materials 23, 827-830 (1994).
91. 王自豪, 林誠謙, and 李弘謙, "談蛋白質折疊與氨基酸序列," 物理雙月刊 (廿四卷二期), 320-327 (2002).
92. H. Moon, A. R. Wheeler, R. L. Garrell, and J. A. Loo, "An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS," Lab Chip 6, 1213-1219 (2006).
93. R. Merrifield, "Solid‐Phase Peptide Synthesis," Advances in enzymology and related areas of molecular biology, 221-296 (1969).
94. E. Mateo-Martí, C. Briones, C. M. Pradier, and J. A. Martin-Gago, "A DNA biosensor based on peptide nucleic acids on gold surfaces," Biosensors and Bioelectronics 22, 1926-1932 (2007).
95. G. E. Moore, "Cramming more components onto integrated circuits," Proceedings of the IEEE 86, 82-85 (1998).
96. F. Járai-Szabó, S. Aştilean, and Z. Néda, "Understanding self-assembled nanosphere patterns," Chemical physics letters 408, 241-246 (2005).
97. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of formation of two-dimensional crystals from latex particles on substrates," Langmuir 8, 3183-3190 (1992).
98. P. Kralchevsky, V. Paunov, I. Ivanov, and K. Nagayama, "Capillary meniscus interaction between colloidal particles attached to a liquid—fluid interface," Journal of colloid and interface science 151, 79-94 (1992).
99. P. Kralchevsky, V. Paunov, N. Denkov, I. Ivanov, and K. Nagayama, "Energetical and force approaches to the capillary interactions between particles attached to a liquid-fluid interface," Journal of colloid and interface science 155, 420-420 (1993).
100. P. A. Kralchevsky, and K. Nagayama, "Capillary forces between colloidal particles," Langmuir 10, 23-36 (1994).
101. K. Nagayama, "Two-dimensional self-assembly of colloids in thin liquid films," Colloids and Surfaces A: Physicochemical and Engineering Aspects 109, 363-374 (1996).
102. N. Denkov, O. Velev, P. Kralchevski, I. Ivanov, H. Yoshimura, and K. Nagayama, "Mechanism of formation of two-dimensional crystals from latex particles on substrates," Langmuir 8, 3183-3190 (1992).
103. R. Micheletto, H. Fukuda, and M. Ohtsu, "A simple method for the production of a two-dimensional, ordered array of small latex particles," Langmuir 11, 3333-3336 (1995).
104. D. Wang, and H. Möhwald, "Rapid Fabrication of Binary Colloidal Crystals by Stepwise Spin‐Coating," Advanced Materials 16, 244-247 (2004).
105. P. Rios, H. Dodiuk, S. Kenig, S. McCarthy, and A. Dotan, "Durable ultra‐hydrophobic surfaces for self‐cleaning applications," Polymers for Advanced Technologies 19, 1684-1691 (2008).
106. J. Rybczynski, U. Ebels, and M. Giersig, "Large-scale, 2D arrays of magnetic nanoparticles," Colloids and Surfaces A: Physicochemical and Engineering Aspects 219, 1-6 (2003).
107. A. Winkleman, B. D. Gates, L. S. McCarty, and G. M. Whitesides, "Directed self‐assembly of spherical particles on patterned electrodes by an applied electric field," Advanced Materials 17, 1507-1511 (2005).
108. 廖仁偉, "蛋白質原位合成生物晶片之設計與製作 Design and fabrication of biochip for in-situ protein synthesis," (2008).
109. 鄭世偉, "實驗室晶片整合之設計與製作," 碩士論文, 國立中央大學光電研究所 (2009).
110. W. Bigelow, D. Pickett, and W. Zisman, "Oleophobic monolayers: I. Films adsorbed from solution in non-polar liquids," Journal of Colloid Science 1, 513-538 (1946).
111. R. G. Nuzzo, and D. L. Allara, "Adsorption of bifunctional organic disulfides on gold surfaces," Journal of the American Chemical Society 105, 4481-4483 (1983).
112. J. B. D. Green, M. T. McDermott, M. D. Porter, and L. M. Siperko, "Nanometer-scale mapping of chemically distinct domains at well-defined organic interfaces using frictional force microscopy," The Journal of Physical Chemistry 99, 10960-10965 (1995).
113. A. Kumar, and G. M. Whitesides, "Patterned condensation figures as optical diffraction gratings," Science 263, 60 (1994).
114. S. Friebel, J. Aizenberg, S. Abad, and P. Wiltzius, "Ultraviolet lithography of self-assembled monolayers for submicron patterned deposition," Applied Physics Letters 77, 2406 (2000).
指導教授 楊宗勳(Tsung-Hsun Yang) 審核日期 2012-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明