博碩士論文 992206017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.147.74.33
姓名 彭逸寧(Yi-ning Peng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 雙色分層螢光粉光學模型之建立與分析
(The study of optical modeling for two phosphors with double-layer)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 新型光電生化感測器之分析與研究★ 結合柱狀透鏡陣列之非成像車頭燈光型設計
★ 薄膜電晶體液晶顯示器中視角色偏之優化補償方法★ 特定色度背光模組零組件之光學特性評估
★ 電子紙增亮分析與模擬設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文中,利用紅綠混粉半球封裝實驗,找出紅粉與綠粉比例與演色性在色度座標上的分佈,針對此紅粉與綠粉比例建立雙粉分層之螢光粉光學模型。我們利用米氏散射與蒙地卡羅光追跡法描述光在螢光膠體中傳遞的行為,接著配合實驗引入吸收係數與轉換係數來模擬白光LED中的藍、綠及紅光能量比。其中,由於螢光粉對不同波長激發光的吸收能力皆不相同,故引入β參數校正藍光頻譜經螢光膠體的形變。此外,除藍光頻譜外,藉由紅粉與綠粉之輻射頻譜與吸收頻譜的分析,探討雙粉封裝中再吸收的效應,改善綠光頻譜因再吸收效應而造成的形變。最後,經由實驗與模擬的驗證與分析,成功的建立出雙粉分層之螢光粉模型。此模型可用來預測不同封裝形式之白光LED的色彩表現。
摘要(英) n this thesis, real package experiments are used to find out the distribution of the ratio of the green and red phosphors and the color rendering index in the Chromaticity Coordinates. With the ratio of green and red phosphors, the optical phosphor model can be established with mixture of double layers. Light scattering can be simulated with Mie scattering based on Monte Carlo ray tracing in phosphor layer. Also, with experiments, these parameters can be captured including blue power, green power and red power in the white light. Besides, absorption coefficient and conversion coefficient are employed to simulate the power of blue, green and red lights in white LED.
Since the absorption and emission of the phosphor is a function of incident wavelength, we introduce a β factor to increase the accuracy of phosphor simulation. Despite blue light spectrum, by the analysis of emission spectrum and absorption spectrum of red and green phosphors, we investigate the effect of re-absorption in the package of double phosphors in order to improve the distortion of green emission spectrum. Finally, with the verification of experiment and the analysis of simulation, we successfully establish the two phosphors model with double layers, which can be used to predict the manifestation of color in white LED with different forms of packaging.
關鍵字(中) ★ 固態照明
★ 封裝
★ 雙粉
★ 模型
關鍵字(英) ★ LED
★ package
★ double phosphors
★ model
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 vii
圖目錄 ix
1.1引言 1
1.2 LED 背景 1
1.3 研究動機與目的 4
1.4 論文大綱 6
第二章 基本原理 7
2.1 引言 7
2.2 LED發光原理 7
2.3 螢光粉發光原理 9
2.4 LED能量轉換過程 12
2.5混色原理 14
第三章 單粉螢光粉光學模型之建立與驗證 17
3.1 引言 17
3.2 混粉之色彩表現 17
3.3 YAG綠色螢光粉光學模型 20
3.3.1 綠色螢光粉之散射模型 21
3.3.2 藍光光源模型之建立 27
3.3.3 綠色螢光粉之吸收參數 29
3.3.4 綠色螢光粉之轉換參數 39
3.3.5 藍光頻譜校正 43
3.3.6 藍綠光頻譜疊加 50
3.3.7 綠色螢光粉模型之驗證 51
3.4 Nitride紅色螢光粉光學模型 56
3.4.1 紅色螢光粉之散射模型 57
3.4.2 紅色螢光粉之吸收與轉換參數 60
3.4.3 紅色螢光粉之驗證 65
第四章 雙粉分層螢光粉光學模型之建立 69
4.1 引言 69
4.2 綠光激發紅色螢光粉之模型 70
4.2.1 綠光光源模型之建立 71
4.2.2 綠光激發紅色螢光粉之吸收係數與轉換係數 74
4.3 雙粉之間再吸收效應 80
4.4 雙粉分層螢光粉模型之驗證與分析 89
第五章 結論 101
參考文獻 103
中英文名詞對照表 108
參考文獻 [1] 「2010年能源產業技術白皮書」,經濟部能源局,中華民國九十九年。
[2] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[3] N. Holonyak and S. F. Bevaqua, “Coherent(visible) Light Emission From Ga(As1–xPx) Junctions,” Appl. Phys. Lett. 1, 82-83 (1962).
[4] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN vased light emitters and lasers (Spinger, London, 1997).
[5] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
[6] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Appl. Phys. Lett. 64, 1687-1689 (1994).
[7] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148 (2001).
[8] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
[9] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
[10] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
[11] T. Treurniet and V. Lammens, “Thermal Management in Color Variable Multi-Chip LED Modules,” 22nd IEEE SEMI-THERM, 173-177 (2006).
[12] P. Deurenberg, C. Hoelen, J. van Meurs, and J. Ansems, “Achieving color point stability in RGB multi-chip LED modules using various color control loops,” Proc. of SPIE. 5941, 59410C (2005).
[13] H. S. Jang, W. B. Im, D. C. Lee, D. Y. Jeon, S. S. Kim, and H. S. Jang, “Enhancement of red spectral emission intensity of Y3Al5O12:Ce3+ phosphor via Pr co-doping and Tb substitution for the application to white LEDs,” J. Luminescence 126, 371–377(2007).
[14] S. J. Duclos, J. Jansma, J. C. Bortscheller, and R. J. Wojnarowski, “Phosphor Coating with Self-adjusting Distance from LED Chip,” United States Patent, US 6635363 B1 (2003).
[15] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980B (2006).
[16] M. Aril, S. Weaver, C. Becker, M. Hsing, and A Srivastava, “Effects of localized heat generations due to the color conversion in phosphor particles and layers of high brightness light emitting diodes,” IEEE Trans. Compon. Packag. 1, 611-619 (2003).
[17] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Select. Topics Quantum Electron. 8, 310-320 (2002).
[18] N. T. Tran, C. G. Campbell, and F. G. Shi, “Study of particle size effects on an optical fiber sensor response examined with Monte Carlo simulation,” Appl. Opt. 45, 7557-7566 (2006).
[19] Y. Shuai, Y. He, N. T. Tran, and F. G. Shi, “Angular CCT Uniformity of Phosphor Converted White LEDs: Effects of Phosphor Materials and Packaging Structures,” IEEE Photon. Technol. Lett. 23, 137-139 (2011).
[20] N. T. Tran and F. G. Shi, “LED Package Design for High Optical Efficiency and Low Viewing Angle,” Proc. IMPACT, 10-13 (2007).
[21] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Express 18, 5055-5060 (2010).
[22] N. T. Tran and F. G.. Shi, “Light extraction from light-emitting diodes: effect of die geometries,” Proc. IMPACT, 1 (2006).
[23] Y. Zhou, N. Tran, Y. C. Lin, Y. He, and F. G. Shi, “One-Component, Low-Temperature, and Fast Cure Epoxy Encapsulant With High Refractive Index for LED Applications,” IEEE Trans. Adv. Packag. 31,484-488 ( 2008).
[24] C. Sommer, F. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and G. Leising, “Tailoring of the Color Conversion Elements in Phosphor-Converted High-Power LEDs by Optical Simulations,” IEEE Photon. Technol. Lett. 20, 739-741 ( 2008).
[25] C. Sommer, F. Reil, J. R. Krenn, P. Hartmann, P. Pachler, S. Tasch, and F. P. Wenzl, “The Impact of Inhomogeneities in the Phosphor Distribution on the Device Performance of Phosphor-Converted High-Power White LED Light Sources,” J. Lightwave Technol. 28, 3226-3232 (2010).
[26] C. Sommer, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, G. Leising, and F. P. Wenzl, “A detailed study on the requirements for angular homogeneity of phosphor converted high power white LED light sources,” Optical Materials 31, 837-848 (2009).
[27] C. Sommer, F. P. Wenzl, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, and G. Leising, “The Effect of the Phosphor Particle Sizes on the Angular Homogeneity of Phosphor-Converted High-Power White LED Light Sources,” IEEE J. Sel. Top. Quant. Electron. 15, 1181-1188 (2009).
[28] Y. Zhu and N. Narendran, “Investigation of Remote-phosphor White Light-Emitting Diodes with Multi-Phosphor Layers,” Jpn. J. Appl. Phys. 49, 100203 (2010).
[29] N. Narendran, “Improved Performance White LED,” Proc. SPIE 5941, 1-6 (2005).
[30] H. Wu, N. Narendran, Y. Gu, and A. Bieman, “Improving the Performance of Mixed-Color White LED by Using Scattered Photon Extraction Technique,” SPIE 6669, 666905 (2007).
[31] C. Zhaohui , Z. Qin, W. Kai, X. Luo, and S. Liu, “Reliability test and failure analysis of high power LED packages,” J. Semicon. 32, 14001-14007 (2010).
[32] R. Hu, X. Luo, H. Feng , and S. Liu, “Effect of phosphor settling on the optical performance of phosphor-convertedwhite light-emitting diode,” Journal of Luminescence 132, 1252–1256 (2012).
[33] 何信潁, 白光LED之YAG螢光粉光學模型之研究,國立中央大學光電科學研究所碩士論文,中華民國九十七年。
[34] D. A. Neamen, Semiconductor Physics And Devices (McGra-Hill Higher Education, New York, 2003).
[35] 郭浩中,賴芳儀和郭守義,LED原理與應用,五南圖書出版公司,台北縣,中華民國一百年。
[36] 劉如熹和王健源,白光發光二極體製作技術,全華科技圖書公司,台北縣,中華民國九十四年。
[37] W. Koechner , Solid-State Laser Engineering (Springer Verlag, London, 2006).
[38] G. Blasse and B.C. Grabmaier, Luminescent materials (Springer Verlag, London, 1997).
[39] A. Didabalapur , Solid State Communications (Springer Verlag, London, 1997).
[40] N. R. Taskar, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined-atom-based nanophosphors for solid state lighting,” Proc. SPIE 5187, 133-141 (2004).
[41] R. Mueller-Mach, G. Mueller, M. Krames, and T. Trottier, “High-power phosphor-converted light-emitting diodes based on III-nitrides,” IEEE J. Sel. Top. Quant. Electron. 8, 339-345 (2002).
[42] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination-grade white pcLEDs,” Proc. SPIE 5187, 115-122 (2004).
[43] 大田登,色彩工程學理論與應用,全華圖書股份有限公司,台北縣,中華民國九十七年。
[44] Color Chromaticity Diagrams,
http://www.eg2.com/Lab/Graphics/Color/Chromaticity.htm.
[45] G. Wyszecki and W. S. Stiles, Color Science Concepts and Method, Quantitative Data and Formulae (Wiley-Interscience, Minnesota, 2000)
[46] Energy star, http://www.energystar.gov/ia/partners/manuf_res/downloads/IntegralLampsFINAL.pdf.
[47] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[48] S. A. Schafer, “Quasi-Monte Carlo methods: applications to modeling of light transport in tissue,” Proc. SPIE 2681, 317 (1996).
[49] S. J. Lee, “Analysis of light-emitting diodes by Monte-Carlo photon simulation,” Appl. Opt. 40, 1427-1437 (2001).
[50] Z. Liu, K. Wang, X. Luo, and S. Liu, “Precise optical modeling of blue light-emitting diodes by Monte Carlo ray-tracing,” Opt. Express 18, 9398-9412 (2010).
[51] M. R. Krames, P. S. Martin, and T. S. Tan, “AlGaInN-based LED having thick epitaxial layer for improved light extraction,” United States Patent, US 6133589 (1999).
[52] W. A. Parkyn and D. G. Pelka, “Light extraction from LEDs with light pipes,” United States Patent, US 6560038 B1 (2001).
[53] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly Enhanced Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor Configuration and Diffuse Reflector Cup,” Jpn. J. Appl. Phys. 44, 649- 651 (2005).
[54] I. Moreno, D. Bermúdez, and M.A. Alejo, “Light-emitting diode spherical packages: an equation for the light transmission efficiency,” Appl. Opt. 49, 12-20 (2010).
[55] C.C. Sun, C.Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
[56] Y. Shuai, N. T. Tran, and F. G. Shi, “Nonmonotonic Phosphor Size Dependence of Luminous Efficacy for Typical White LED Emitters,” IEEE Photon. Technol. Lett. 23, 552-554 (2011).
[57] N. T. Tran, J. P. You, and F. G. Shi, “Effect of Phosphor Particle Size on Luminous Efficacy of Phosphor-Converted White LED,” J. Lightwave Technol. 27, 5145-5150 (2009).
[58] J. P. Chevaillier, J. Fabre, and P. Hamelin, “Forward scattered light intensities by a sphere located anywhere in a Gaussian beam,” Appl. Opt. 25, 1222-1225 (1986).
[59] D. Toublanc, “Henyey-Greenstein and Mie phase functions in Monte Carlo radiative transfer computations,” Appl. Opt. 35, 3270-3274 (1996).
[60] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年。
[61] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31, 2193-2195 (2006).
[62] C. C. Chang, R. Chern, C. C. Chang, C. Chu, J. Y. Chi, J. Su, I. M. Chan, and J. T. Wang, “Monte Carlo Simulation of Optical Properties of Phosphor-Screened Ultraviolet Light in a White Light-Emitting Device,” Jpn. J. Appl. Phys. 44, 6056-6061 (2005).
[63] M. Kerker, H. Chew, P. J. McNulty, J. P. Kratohvil, D. D. Cooke, M. Sculley, and M. P. Lee, “Light scattering and fluorescence by small particles having internal structure,” J. Histochem. Cytochem. 27, 250-263 (1979).
[64] Q. Fu and W. Sun, “Mie Theory for Light Scattering by a Spherical Particle in an Absorbing Medium,” Appl. Opt. 40, 1354-1361 (2001).
[65] I. W. Sudiarta and P. Chylek, “Mie-scattering formalism for spherical particles embedded in an absorbing medium,” J. Opt. Soc. Am. 18, 1275-1278 (2001).
[66] D. L. MacAdam, Spectrophotometry in Color Measurement (Springer-Verlag, London 1981), pp.36-45.
[67] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated light-emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
[68] Á. Borbély and S. G. Johnson, “Performance of phosphor-coated LED optics in ray trace simulations,” Proc. SPIE 5530, 266-273 (2004).
[69] 鄭又瑄,螢光粉參數對於白光LED封裝效率之研究,國立中央大學光電所碩士論文,中華民國一百年。
指導教授 孫慶成、楊宗勳
(Ching-cherng Sun、Tsung-hsun Yang)
審核日期 2012-8-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明