博碩士論文 992206001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:119 、訪客IP:3.135.198.49
姓名 宋永舜(Yung-shun Sung)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 導電布拉格反射鏡運用於高效率發光二極體之研究
(Research of applying conductive Distributed Bragg Reflectors to high-efficiency Light-Emitting Diodes)
相關論文
★ 半導體雷射控制頻率★ 比較全反射受挫法與反射式干涉光譜法在生物感測上之應用
★ 193nm深紫外光學薄膜之研究★ 超晶格結構之硬膜研究
★ 交錯傾斜微結構薄膜在深紫外光區之研究★ 膜堆光學導納量測儀
★ 紅外光學薄膜之研究★ 成對表面電漿波生物感知器應用在去氧核糖核酸及微型核糖核酸 雜交反應檢測
★ 成對表面電漿波生物感測器之研究及其在生醫上的應用★ 探討硫化鎘緩衝層之離子擴散處理對CIGS薄膜元件效率影響
★ 以反應性射頻磁控濺鍍搭配HMDSO電漿聚合鍍製氧化矽摻碳薄膜阻障層之研究★ 掃描式白光干涉儀應用在量測薄膜之光學常數
★ 量子點窄帶濾光片★ 以量測反射係術探測光學薄膜之特性
★ 嵌入式繼光鏡顯微超頻譜影像系統應用在口腔癌切片及活體之設計及研究★ 軟性電子阻水氣膜之有機層組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本實驗研究著重於反射鏡的光學設計,利用高折射率(TNO)與低折射率(AZO)透明導電膜材料堆疊形成具導電性的布拉格反射鏡。分別運用於藍光LED與紅光LED,並實際做成元件量測。
透明導電膜的製備都在室溫下進行鍍製並且在真空環境下退火370度。在藍光LED部分,以P-GaN/ITO/(TNO/AZO)^4/TNO的設計最佳並實際鍍製反射率可達約81%,電阻率可達到1.453?10-3Ω-cm。模擬P-GaN/ITO/(TNO/AZO)^10/TNO時,反射率約可以達到94%。在紅光LED的部分,P-GaP/ITO/AZO/DBR/Ag的反射鏡設計可以比單純使用銀作為反射鏡反射率來的較高,實際做成元件並量測軸向光強可以發現有效的由478.3mcd提升至508.8mcd,在表面粗化後更是由812mcd提升至902mcd,有效提升軸向光強約11%。
摘要(英) This study focused on optical design of reflectors and the films stacked by high refractive index material (TNO) and low refractive index (AZO) were deposited to make Distributed Bragg Reflectors. It was applied to blue LED, red LED and their device was made respectively for measurements.
All transparent conductive oxide films were post-annealed at 370℃ in a vacuum. In blue LED part, the design of P-GaN/ITO/(TNO/AZO)^4/TNO was optimal, reflectivity of the coating reached approximately to 81%, and the conductive reflector showed a resistivity of 1.453?10-3Ω-cm. We used optic design of P-GaN/ITO/(TNO/AZO)^10/TNO to simulate coating with reflectivity approximately 94%. In red LED part, the reflectivity of P-GaP/ITO/AZO/DBR/Ag design is better than those using silver as the reflector. Actually we made device and measured the value of axial intensity, which increased from 478.3 mcd to 508.8 mcd. After surface roughening, the value of axial intensity increased from 812 mcd to 902 mcd. The design effectively enhanced axial intensity up to 11%.
關鍵字(中) ★ 布拉格反射鏡
★ 透明導電膜
★ 高效率發光二極體
關鍵字(英) ★ transparent conductive oxide films
★ high-efficiency Light-Emitting Diodes
★ Distributed Bragg Reflectors
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 發光二極體發展歷史 1
1-2 氮化鎵系列材料 2
1-3 磷化物系列材料 5
1-4 研究動機 7
第二章 基礎理論 9
2-1 LED發光基本理論 9
2-1-1 基本原理 9
2-1-2 直接能隙與間接能隙半導體 10
2-2透明導電膜 11
2-2-1 簡介 11
2-2-2 基本理論 12
2-2-3 光學與電特性 14
2-2-4 磁控濺鍍法 19
2-3 歐姆接觸 20
2-4 反射鏡 21
第三章 實驗步驟與設備 23
3-1 導電膜實驗步驟與量測 23
3-1-1 實驗步驟 23
3-1-2 鍍膜設備與材料 24
3-1-3 四點探針 25
3-1-4 霍爾量測儀 26
3-1-5 光譜儀 28
3-2 特徵接觸電阻量測 28
3-2-1 TLM(Transmission Line Model) pattern 圖案製作 28
3-2-2 歐姆接觸電阻量測 29
第四章 實驗結果與討論 32
4-1 透明導電膜製備 32
4-1-1高折射率TNO導電膜 32
4-1-2低折射率ITO與AZO導電膜 35
4-2 藍光LED 39
4-2-1 反射鏡光學設計 39
4-2-2 歐姆接觸 41
4-2-3 導電布拉格反射鏡 44
4-3 紅光LED 47
4-3-1 反射鏡光學設計 47
4-3-2 歐姆接觸 55
4-3-3 元件應用 56
第五章 結論 59
參考文獻 61
參考文獻 [1] H. J. Round, “ A note on carborundum, “ Electrical world, vol.49, no.6, pp.309, 1907.
[2] G. B. Stringfellow, “ High brightness light emitting diode, “ Academic Press Inc.
Boston, pp. 149, 1997.
[3] H. Sugawara, M. Ishikawa, and G. Hatakoshi, High-efficiency InGaAlP/GaAs
visible light-emitting diodes, Appl. Phys. Lett. 58, 1010 (1991).
[4] H. Sugawara, K. Itaya, H. Nozaki, and G. Hatakoshi, High-brightness InGaAlP
green light-emitting diodes, Appl. Phys. Lett. 61, 1775 (1992).
[5] Vanderwater, D. A. ; Tan, I.-H. ; Hofler, G.E. ; Defevere, D. C. ; Kish, F. A. ,
High-brightness AlGaInP light emitting diodes; Proceedings of the IEEE Volume 85, Issue 11, NOV. 1997.
[6] S. NaKamura, T. Mukai, and M. Senoh, Appl. Phys. Lett. 64, 1687, 1994.
[7] S. NaKamura, M. Senoh, and N. Iwasa, S. Hagahama, T. Yamada, and T. Mukai, Jpn. J. Appl. Phys. Part 234, L1332, 1995.
[8] T. Mukai, D. Morita, and S. Nakamura, J Cryst. Growth 189-190, 778, 1998.
[9] T. Mukai, H. Narimatsu, and S. Nakamura, Jpn. J. Appl. Phys. Part 237, L479, 1998.
[10] T. Margalith, O. Buchinsky, D. A. Cohen, A. C. Abare, M. Hansen, S. P. DenBaars, and L. A. Coldren, “ Indium tin oxide contacts to gallium niu-tride optoelectronic device, “ Appl. Phys. Lett. , vol. 74, pp. 3930-3932, 1999.
[11] F. A. Kish, F. M. Sterakna, D. C. DeFevere, D. A. Vanderwater, K. G. Park, C. P. Kuo, T. D. Osentowski, M. J. Peanasky, J. G. Yu, R. M. Fletcher, D. A. Steigerwald, and M. G. Craford, “ Very high-efficiency semiconductor wafer-bonded transparent-substrate (Al Ga) InP/GaP light-emitting diodes, “ Appl. Phys. Lett., vol. 64, pp.2839-2841, 1994.
[12] K. H. Huang, J. G. Yu, C. P. Kuo, R. M. Fletcher, T. D. Osentowski, L. J. Stinson, and M. G. Craford, “Twofold efficiency improvement in high performance AlGaInP light-emitting diodes in the 555-620 nm spectral region using a thick GaP window layer, “ Appl. Phys. Lett., vol. 61, pp. 1045-1047, 1992.
[13] Yi-Jung Liu, Chih-Hung Yen, Kuo-Hui Yu, Pei-Ling Lin, Li-Yang Chen, Tsung-Han Tsai, Tsung-Yuan Tsai, and Wen-Chau Liu, “ Characteristics of an AlGaInP-Based Light Emitting Diode With an Indium-Tin-Oxide (ITO) Direct Ohmic Contact Structure.” IEEE Journal of Quantum Electronics, vol. 46, no.2, Feb. 2010.
[14] K. Badeker, Annals of Physics, (Leipzig), 22 749 (1907).
[15] J. T. Littleton, U. S. Patent, 2,118,795 (1938).
[16] J. H. Lee and B. O. Park, “ Transparent conducting ZnO:Al, In and Sn thin films deposited by sol-gel method”, Thin Solid Films 426, 94 (2003).
[17] M. Chen, Z. L. Pei, X. Wang, X. H. Liu, C. Sun and L. S. Wen, “ Intrinsic limit of electrical properties of transparent conductive oxide films” Journal of Physics D : Applied Physics 33, 2538-2548 (2000).
[18] Yoon Tae Hwang, Hyun-Gi Hong, Tae-Yeon Seong, D.-S. Leem, T. Lee, K.-K. Kim, and J.-O. Song, “ Electrical and thermal stability of Ag ohmic contacts for GaN-based flip-chip light-emitting diodes by using an AgAl alloy capping layer” Materials Science in Semiconductor Processing 10 (2007) 14-18.
[19] Se-Yeon Jung, Yoon-Han Kim, Young Shik Kong, and Tae-Yeon Seong, “ Improved electrical and thermal properties of Ag contacts for GaN-based flip-chip light-emitting diodes by using a NiZn alloy capping layer” Superlattices and Microstructures 46 (2009) 578-584.
[20] C. H. Chou, C. L. Lin, Y. C. Chuang, H. Y. Bor, and C. Y. Liu, “ High thermally stable Ni/Ag(Al) alloy contacts on P-GaN” , Appl. Phys. Lett., 90 , 022103 (2007).
[21] Michael H. MacDougal, P. Daniel Dapkus, Fellow, IEEE, Vasily Pudikov, Hanmin Zhao, and Gye Mo Yang, “ Ultralow Threshold Current Vertical-Cavity Surface-Emitting Lasers with AlAs Oxide-GaAs Distributed Bragg Reflectors”, IEEE Photonics Technology Letters, vol. 7, no. 3, March 1995.
[22] H. M. Hg, T. D. Moustakas, and S. N. G. Chu, “ High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy”, Appl. Phys. Lett. 76, 2818 (2000).
[23] Takao Ishida, Masahisa Okada, Tetsuo Tsuchiya, Takashi Murakami, and Miki Nakano, “ Structural and surface property study of sputter deposited transparent conductive Nb-doped titanium oxide.” Thin Solid Films 519 1934-1942 (2011).
[24] W. F. Liu, G. T. Du, Y. F. Sun, J.M. Bian, Y. Cheng, “ Effects of hydrogen flux
on the properties of Al-doped ZnO films sputtered in Ar + H2 ambient at low
temperature”, Applied Surface Science, 253, 2999 (2007)
[25] F. Ruske, T. V. Sittinger, W. Werner, B. Szyszka, K.-U. van Osten, K. Dietrich,
“ Hydrogen doping of DC sputtered ZnO:Al films from novel target material”,
Surface & Coating Technology, 200, 236 (2005).
[26] J. S. Jang, S. J. Park, T. Y. Seong, J. The Electrochemical Soci, 146, 3425, 1999.
[27] H. K. Cho, T. Hossian, J. W. Bae, I. Adeside, Solid-State Electronics 49, 774-778, 2005.
[28]李正中, “薄膜光學與鍍膜技術”, 藝軒圖書出版社, 第六版,第262頁, (2009).
指導教授 李正中(Cheng-Chung Lee) 審核日期 2012-8-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明