博碩士論文 972202012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.15.3.154
姓名 趙振盛(Chen-sheng Chao)  查詢紙本館藏   畢業系所 物理學系
論文名稱 利用反射式紅外光譜吸收儀及熱脫附質譜術來研究甲醇於白金奈米粒子的的分解反應之催化模型系統
(Methanol Decomposition on Pt Nanoparticles supported by Al2O3/NiAl(100):A combined IRAS and TPD study)
相關論文
★ 鐵電型液晶材料光熱相變研究★ An AFM study of thermal behavior of lipid over layers on mica
★ 利用RHEED、LEED、AES 研究Al2O3在NiAl(100)和Co在Al2O3/NiAl(100)上的幾何結構和生長方式★ Patterning Co Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Growth of Oxide on NiAl(100) and its Interaction with Au★ 用原子力顯微鏡在脂質膜上做微影術並且討論其在基板上之動力行為
★ Catalytic properties of Au nanoclusters supported on Al2O3/NiAl (100) surface★ Atomic Structures and Electro-catalytic Properties of Pt Nanoclusters on Thin Film Al2O3/NiAl(100)
★ Nanowires from Aligned One-dimensional Arrays of Co Nanoclusters on Al2O3 Grown on Vicinal NiAl Surfaces★ 以掃描穿隧電子顯微鏡及光激發能譜研究奈金屬粒子在氧化鋁薄膜上的成長
★ 在氧化鋁上成長金與白金的和金奈米粒子★ 以第一原理研究一到二顆金原子在θ型氧化鋁(001)表面上的吸附與擴散行為
★ 甲醇在以thita-三氧化二鋁/鎳鋁合金為基板之奈米黃金粒子上的分解反應-以熱脫附質譜術與傅立葉紅外光譜儀方法之研究★ 探測θ-Al2O3/NiAl(100)表面之下的結構以及Au-Pt雙金屬顆粒在θ-Al2O3/NiAl(100)表面上的形貌
★ 利用穿隧式電子顯微鏡的探針產生在鎳鋁合金(100)面上的局部氧化反應★ 利用PES探討吸附物對Au-Pt奈米團簇所引發表面發生重構的現象
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們利用熱脫附質譜技術及反射式紅外線光譜吸收儀來研究甲醇於白金奈米粒子上的分解反應之觸媒模型。白金以蒸鍍的方式,在θ相的氧化鋁成長成白金奈米粒子。在此模型系統上有兩種甲醇的反應途徑被發現:(1)甲醇(CH3OH)的去氫化產生一氧化碳(CO)和氫氣(H2);(2)甲醇(CH3OH)內的碳氧鍵斷裂而產生甲烷(CH4)。
在去氫化這條反應途徑上,低配位數白金可在較低溫的情況下,使甲醇分解成一氧化碳,在Pt(100)奈米粒子上發生於150 K,而在Pt(111)奈米粒子上則發生於200 K。由實驗結果顯示位於平坦及低配位處上的白金,皆可對甲醇進行催化反應。甲醇在白金奈米粒子上分解成一氧化碳的效能約為一般白金單晶面上的2~6倍。除此之外,我們發現由甲醇分解而來的氫原子具有降低一氧化碳裂解反應發生的機率。
在另一反應路徑-碳氧鍵斷裂,甲醇首先分解成甲基(CH3)吸附於表面。加溫到300 K以後,甲基只會與氫原子合併,形成甲烷脫附;而不會進一步分解成其它的碳氫化合物。我們發現此分解途徑可能與奈米粒子的晶格常數有關,當晶格常數隨著奈米粒子增大而減少時,此反應途徑的發生機率會隨之降低。在一氧化碳毒化的白金實驗上,這兩種反應途徑仍持續發生,由此顯示除了吸附在單顆白金原子上的甲醇可反應外,兩顆或三顆白金原子的中間位置亦可對甲醇進行反應。
我們亦對甲醇於氧化白金(Pt2+)的催化反應進行研究。將300 K時成長的白金奈米粒子加溫至650 K使之氧化,並造成底層氧化鋁往上包覆住白金奈米粒子,僅有30 %的白金原子(低配位數的白金)裸露於表面上。在氧化白金上,依然可觀察到甲醇的兩種反應路徑。相較於純白金上的反應,甲醇在氧化白金上的去氫化的反應行為雖然相似,但產能僅剩一半左右;然而對於氫氧鍵斷裂的反應途徑,卻沒有太大的影響。此外,一氧化碳在氧化白金上容易裂解,發生溫度約為200 K;而一般在低配位的純白金上,此反應溫度約為500 K。
摘要(英) Methanol decomposition on Pt nanoparticles supported by Al2O3/NiAl(100) as a model system is studied by IRAS and TPD. The Pt nanoparticles are grown from vapor deposition. Two channels of methanol decomposition are revealed: dehydrogenation and C-O bond scission. The adsorbed methanol are dehydrogenated to CO first at low-coordinated Pt sites, at 150 K on Pt(100) clusters and 200 K on Pt(111) clusters, whereas both terrace and low-coordinated Pt sites are reactive toward the dehydrogenation, despite of the cluster size. The produced CO per surface Pt on the clusters are 2 - 6 times more than those on the single-crystal counterparts. Additionally, the co-adsorbed atomic hydrogen from dehydrogenated methanol prevent CO from dissociating further to elemental carbon. In the alternative reaction channel, the C-O bond break to form intermediate CH3; the CH3 combine with the atomic hydrogen above 300 K to form methane, rather than dehydrogenating to other hydrocarbons. The C-O bond scission channel exhibits evident dependence on the lattice constant of the clusters: the reaction probability declines when the lattice constant decreases with the cluster size or coverage. The CO blocking experiments suggest that not only the atop sites but also the bridge and/or hollow sites are reactive toward the two reaction channels.
The two reaction channels are also observed for methanol adsorbed on oxidized Pt (Pt2+) nanoclusters. The oxidized Pt clusters grown at 300 K and annealed to 650 K are partially encapsulated by the alumina, and only 30 % bare Pt remain (low-coordinated Pt). The dehydrogenation to CO starts at 150 K, resembling that on the pristine Pt clusters, but the produced CO per surface Pt on the oxidized clusters are only 50 % of those on the pristine Pt clusters. In contrast, the oxidation of Pt has little effect on the C-O bond scission: the produced methane per surface Pt are similar on both oxidized and pristine clusters. Moreover, CO dissociation is enhanced on the oxidized low-coordinated Pt, which occurs above 200 K, significantly lower than that on the pristine low-coordinated Pt (500 K).
關鍵字(中) ★ 甲醇
★ 奈米粒子
★ 白金
★ 模型系統
★ 熱脫附
★ 紅外光
★ 催化
★ 毒化
關鍵字(英) ★ catalyst
★ platinum
★ cluster
★ nanoparticle
★ methanol
★ model system
★ poison
★ IRAS
★ TPD
★ Pt
論文目次 摘要……………………………………………………………………………………………..i
Abstract………………………………………………………………………………………..ii
致謝…………………………………………………………………………………………iii
Contents……………………………………………………………………………………….v
List of figures………………………………………………………………………………...vii
Chapter 1 Introduction………………………………………………....................................1
Chapter 2 Literature survey………………………………………………………………....4
2.1 The Characterization of θ-Al2O3/NiAl(100)
and Pt clusters on Al2O3/NiAl(100)…………………………………………….4
2.2 CO on Pt single surfaces and supported clusters………………………………9
2.2.1 CO on Pt(111)..…………………………………………………………..9
2.2.2 CO on Pt(100)..…………………………………………………………..10
2.2.3 CO on stepped Pt...………………………………………………………11
2.2.4 CO on oxide-supported Pt clusters…………………………………….....14
2.3 Methanol on Pt surfaces and clusters…………………………………………..17
2.3.1 Methanol on Pt(111), defect of Pt(111) and sputtered Pt(111)…………..17
2.3.2 Methanol on Pt(100)……………………………………………………..19
2.3.3 Methanol on Pt(110)……………………………………………………...20
2.4 Direct methanol fuel cells……………………………………………………...22
Chapter 3 Experimental methods & apparatus………………………..............................23
3.1 Experimental methods…………………………………………………………23
3.1.1 Cleaning NiAl(100)………………………………………………………23
3.1.2 θ-Al2O3 ultrathin film growth……………………………………………25
3.1.3 Vapor deposition of Pt……………………………………………………25
3.1.4 Methanol adsorption and reaction………………………………………..26
3.2 Temperature programmed desorption (TPD)…………………………………..27
3.3 Infrared reflection absorption spectroscopy……………………………………32
3.3.1 Principle of IRAS……………………………………………..….32
3.3.2 Fourier Transform Interferometers……………………………….35
3.4 LEED and ASE………………………………………………………………..38
3.4.1 Low Energy Electron Diffraction (LEED)…………………………….....38
3.4.2 Auger Electron Spectroscopy (AES)……………………………………..38
Chapter 4 Result and discussions…………………………………………………………..40
4.1 CO adsorbed on Pt or oxidized Pt clusters/Al2O3/NiAl(100)………………….40
4.1.1 TPD spectra for CO on Pt/Al2O3/NiAl(100)………………………………40
4.1.2 CO IRAS on Pt/Al2O3/NiAl(100)…………………………………………41
4.1.3 IRAS CO on oxidized Pt/Al2O3/NiAl(100)………………………………46
4.1.4 Summary of CO probe…………………….………………………………48
4.2 The reaction of methanol on Pt/Al2O3/NiAl(100)……………………………...51
4.2.1 TPD spectra for methanol on Pt clusters…………...……………………...51
4.2.2 IRAS spectra for methanol on Pt clusters………………...……………….54
4.2.3 Detail examinations and discussions - methanol on Pt clusters………….. 59
4.2.4 The reaction of methanol on CO-blocking Pt clusters…………………...67
4.3 The reaction of methanol on oxidized Pt/Al2O3/NiAl(100)….………………...70
4.3.1 IRAS spectra for methanol on oxidized Pt clusters……………………….70
4.3.2 TPD spectra for methanol on oxidized Pt clusters………………………...72
4.3.3 Discussions for methanol on oxidized Pt clusters…………………………76
Chapter 5 Conclusion………………………………………………………………………79
Reference……………………………………………………………………………………..81
參考文獻 [1.1] N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286, 246 (1993)
[1.2] Jianhua Wang and R. I. Masel, J. Vac. Sci. Technol. A 9, 1879 (1991)
[1.3] Jianhua Wang and R. I. Masel, J. Am. Chem. Soc. 113, 5850 (1991)
[1.4] B.A. Sexton, Surf. Sci. 102, 271 (1981)
[1.5] Iva Matolinova,, Viktor Johanek, Josef Mysliveček, Kevin C. Prince, Tomaš Skala, Michal Škoda, Nataliya Tsud, Mykhailo Vorokhta and Vladimir Matolin,
Surf. Interface Anal. 43, 1325 (2010)
[1.6] M. B umer, H.-J. Freund, Prog. in Surf. Sci. 61, 127 (1999)
[1.7] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600, 4978 (2006)
[1.8] Meng-Fan Luo, Ming-Han Ten, Chao-Chian Wang, Won-Ru Lin, Chiun-Yu Ho, Bo-We Chang, Cheng-Tin Wang, Yin-Chang Lin, and Yao-Jane Hsu, J. Phys. Chem. C 113, 12419 (2009)
[1.9] Y.-N. Sun, Z.-H. Qin, M. Lewandowski, S. Shaikhutdinov and H.-J. Freund, Surf. Sci. 603, 3099 (2009)
[2.1] S.D. Sartale, H.W. Shiu, M.H. Ten, J.Y. Huang, M.F. Luo, Surf. Sci. 600, 4978 (2006)
[2.2] Guo-Ray Hu, Chen-Sheng Chao, Hong-Wan Shiu, Cheng-Ting Wang, Won-Ru Lin, Yao-Jane Hsu and Meng-Fan Luo, Phys. Chem. Chem. Phys. 13, 3281 (2011)
[2.3] M.F. Luo, W.H. Wen, C.S. Lin, C.I. Chiang, S.D. Sartale, M.S. Zei, Surf. Sci. 601, 2139 (2007)
[2.4] Meng-Fan Luo, Ming-Han Ten, Chao-Chian Wang, Won-Ru Lin, Chiun-Yu Ho, Bo-We Chang, Cheng-Tin Wang, Yin-Chang Lin, and Yao-Jane Hsu, J. Phys. Chem. C 113, 12419 (2009)
[2.5] M. Klimenkov, H. Kuhlenbeck, S.A. Nepijko, Surf. Sci. 539, 31 (2003)
[2.6] U. Heiz, A. Sanchez, S. Abbet, and W.-D. Schneider, J. Am. Chem. Soc. 121, 3214 (1999)
[2.7] Elaine M. McCash, Surface Chemistry, Oxford University Press (2001)
[2.8] A. Schlapka, U. Kasberger, D. Menzel, P. Jakob, Surf. Sci. 502-503, 129 (2002)
[2.9] Hirosato Yoshida, Koichiro Ogawa, Naoto Todoroki, Yoshinobu Yamada, and Toshimasa Wadayama, J. Surf. Sci. Nanotech. 8, 161 (2010)
[2.10] B.E. Hayden and A.M. Bradshaw, Surf. Sci. 125, 787 (1983)
[2.11] R. Martin, P. Gardner, A.M. Bradshaw, Surf. Sci. 342, 69 (1995)
[2.12] P.A. Thiel, R.J. Behm, P.R. Norton and G. Ertl, J. Chem. Phys., 78, 7448 (1983)
[2.13] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of surfaces, Wiley, New York (1988)
[2.14] J. Yoshinobu, N. Tsukahara, F. Yasui, K. Mukai, and Y. Yamashita, Phys. Rev. Lett. 90, 248301 (2003)
[2.15] R.J. Mukerji, A.S. Bolina and W.A. Brown, Surf. Sci. 527, 198 (2003)
[2.16] C.R. Henry, Surf. Sci. Rep. 31, 231 (1998)
[2.17] M. B umer, H.-J. Freund, Prog. in Surf. Sci. 61, 127 (1999)
[2.18] E.I. Altman, R.J. Gorte, Surf. Sci., 172, 71 (1986)
[2.19] E.I. Altman, R.J. Gorte, Surf. Sci., 195, 392 (1988)
[2.20] Y.-N. Sun, Z.-H. Qin, M. Lewandowski, S. Shaikhutdinov, H.-J. Freund, Surf. Sci. 603, 3099 (2009)
[2.21] Matthew J. Lundwall, Sean M. McClure, and D. Wayne Goodman, J. Phys. Chem. C, 114, 7904 (2010)
[2.22] A. Al-Shemmary, R. Buchwald and K. Al-Shamery, J. Phys.: Condens. Matter 22, 084011 (2010)
[2.23] D.R. Mulins, K.Z. Zhang, Surf. Sci. 509, 163 (2002)
[2.24] B.A. Sexton, Surf. Sci. 102, 271 (1981)
[2.25] C. Panja, N. Saliba, B.E. Koel, Surf. Sci., 395, 248 (1998)
[2.26] K. D. Gibson, L. H. Dubois, Surf. Sci. 233, 59 (1990)
[2.27] Iva Matolinova,, Viktor Johanek, Josef Mysliveček, Kevin C. Prince, Tomaš Skala, Michal Škoda, Nataliya Tsud, Mykhailo Vorokhta and Vladimir Matolin,
Surf. Interface Anal. 43, 1325 (2010)
[2.28] Jeff Greeley, and Manos Mavrikakis, J. Am. Chem. Soc. 124, 7193 (2002)
[2.29] Jeff Greeley, and Manos Mavrikakis, J. Am. Chem. Soc. 126, 3910 (2004)
[2.30] S. K. Desai, M. Neurock, K. Kourtakis, J. Phys. Chem. B 106, 2559 (2002)
[2.31] N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286, 246 (1993)
[2.32] Jianhua Wang and R. I. Masel, J. Vac. Sci. Technol. A 9, 1879 (1991)
[2.33] Yuhai Hu and Keith Griffiths, Surf. Sci. 601, 2467 (2007)
[2.34] 旗威科技有限公司、勝光科技股份有限公司, 新能源時代的DMFC直接甲醇燃料電池原理.應用與實作, 旗標出版股份有限公司 (2006)
[2.35] 依寶廉, 燃料電池-原理與應用, 五南書局 (2005)
[3.1] Elaine M. McCash, Surface Chemistry, Oxford University Press (2001)
[3.2] Hans L th, Surfaces and Interfaces of Solid (2nd), Springer-Verlag (1993)
[3.3] John B. Hudson, Surface Science: an introduction, J. Wiley & Sons (1998)
[3.4] Harald Ibach, Physics of Surfaces and Interfaces, Springer-Verlag (2006)
[3.5] Skoog D.A. et al., Principles of Instrumental Analysis (4th), Saunders College (1992)
[3.6] P. Hollins and J. Pritchard, Prog. Surf. Sci. 19, 275 (1985)
[3.7] F. M. Hoffmann, Surf. Sci. Rep. 3, 107 (1982)
[3.8] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of surfaces, Wiley, New York (1988)
[3.9] R. G. Greenler, J. Chem. Phys., 44, 310 (1966)
[3.10] Marcus , H.-J. Freund, Progress in Surf. Sci. 61, 127 (1999)
[3.11] ABB FT-IR reference manual
[3.12] 李冠卿, 近代光學, 聯經出版社 (1988)
[4.1] Matthew J. Lundwall, Sean M. McClure, and D. Wayne Goodman, J. Phys. Chem. 114, 7904 (2010)
[4.2] Luca Vattuone, Letizia Savio, Mario Rocca, Surf. Sci. Rep. 63, 101 (2008)
[4.3] A.M. Bradshaw, E. Schweizer, Infrared reflection absorption spectroscopy of adsorbed molecules, in: R.E. Hester(Ed.), Advances in Spectroscopy: Spectroscopy of surfaces, Wiley, New York (1988)
[4.4] H. Steininger, S. Lehwald, and H. Ibach, Surf. Sci. 123, 264 (1982)
[4.5] Jiazhan Xu, John T. Yates. and Jr., Surf. Sci. 327, 193 (1995)
[4.6] Hirosato Yoshida, Koichiro Ogawa, Naoto Todoroki, Yoshinobu Yamada, and Toshimasa Wadayama, J. Surf. Sci. Nanotech. 8, 161 (2010)
[4.7] B.E. Hayden and A.M. Bradshaw, Surf. Sci. 125, 787 (1983)
[4.8] R.J. Mukerji, A.S. Bolina and W.A. Brown, Surf. Sci. 527, 198 (2003)
[4.9] J. Yoshinobu, N. Tsukahara, F. Yasui, K. Mukai, and Y. Yamashita, Phys. Rev. Lett. 90, 248301 (2003)
[4.10] T. Rise, A. Carlsson, M. B umer, T. Kl ner, H.-J. Freund, Surf. Sci. 546, L829 (2003)
[4.11] Meng-Fan Luo, Ming-Han Ten, Chao-Chian Wang, Won-Ru Lin, Chiun-Yu Ho, Bo-We Chang, Cheng-Tin Wang, Yin-Chang Lin, and Yao-Jane Hsu, J. Phys. Chem. C 113, 12419 (2009)
[4.12] H.C. Hsu, M.F. Luo, unpublished results
[4.13] Y.-N. Sun, Z.-H. Qin, M. Lewandowski, S. Shaikhutdinov and H.-J. Freund, Surf. Sci. 603, 3099 (2009)
[4.14] Darren J. Oakes, Martin R. S. McCoustra and Michael A. Chesters, Faraday Discussion. 96, 325 (1993)
[4.15] Jianhua Wang and R. I. Masel, J. Vac. Sci. Technol. A 9, 1879 (1991)
[4.16] Jianhua Wang and R. I. Masel, J. Am. Chem. Soc. 113, 5850 (1991)
[4.17] Guo-Ray Hu, Chen-Sheng Chao, Hong-Wan Shiu, Cheng-Ting Wang, Won-Ru Lin, Yao-Jane Hsu and Meng-Fan Luo, Phys. Chem. Chem. Phys. 13, 3281 (2011)
[4.18] J. S. Huberty and R. J. Madix, Surf. Sci., 360, 144 (1996)
[4.19] S. Schauermann, J. Hoffmann, V. Joha’ nek, J. Hartmann and J. Libuda,
Phys. Chem. Chem. Phys., 4, 3909 (2002)
[4.20] W. S. Sim, P. Gardner and D. A. King, J. Phys. Chem., 99,16002 (1995)
[4.21] B.A. Sexton, Surf. Sci. 102, 271 (1981)
[4.22] N. Kizhakevariam and E.M. Stuve, Surf. Sci. 286, 246 (1993)
[4.23] Iva Matolinova,, Viktor Johanek, Josef Mysliveček, Kevin C. Prince, Tomaš Skala, Michal Škoda, Nataliya Tsud, Mykhailo Vorokhta and Vladimir Matolin, Surf. Interface Anal. 43, 1325 (2010)
[4.24] W. Eberhardt, F. Greuter, and E. W. Plummer, Phys. Rev. Lett. 46, 1085 (1981)
指導教授 羅夢凡(Meng-Fan Luo) 審核日期 2012-7-25
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明