博碩士論文 992202606 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:90 、訪客IP:3.139.83.79
姓名 柯佐安(Andreas Felix)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Case study of an extended Fitzhugh-Nagumo model with chemical synaptic coupling and application to C. elegans functional neural circuits)
相關論文
★ 二維非彈性顆粒子之簇集現象★ 螺旋狀高分子長鏈在拉力下之電腦模擬研究
★ 顆粒體複雜流動之研究★ 高分子在二元混合溶劑之二維蒙地卡羅模擬研究
★ 帶電高分子吸附在帶電的表面上之研究★ 自我纏繞繩節高分子之物理
★ 高分子鏈在強拉伸流場下之研究★ 利用雷射破壞方法研究神經網路的連結及同步發火的行為
★ 最佳化網路成長模型的理論研究★ 高分子鏈在交流電場或流場下的行為
★ 驟放式發火神經元的數值模擬★ DNA在微通道的熱泳行為
★ 皮膚細胞增生與腫瘤生長之模擬★ 耦合在非線性系統中的影響:模型探討以及非線性分析
★ 從網路節點時間序列分析網路特性並應用在體外培養神經及心臟細胞★ Predicting Self-terminating Ventricular Fibrillation by Bivariate Data Analysis and Controlling Cardiac Alternans by Chaotic Attractors
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 了解由感官之輸入到行為的表現之神經行為是在神經科學上的一個主要任務,
而秀麗隱桿線蟲在生物學中是一個標準之模型生物,其體內神經間之連結已被
完全了解。秀麗隱桿線蟲能對外在的影響做簡單的行為反應,例如,化學趨向
性以及熱趨向性,而負責反應的神經迴路包含了感覺神經元、中間神經元以及
運動神經元,是當前的研究課題。
在本論文中,我們藉由衍伸的Fitzhugh-Nagumo模型來研究簡單的神經迴路,
並且藉由化學突觸進行耦合激發或抑制後細胞,同時藉由閘門之動力學行為來
描述神經傳導物受器之動力學行為,並利用參數之調控以達到突觸之區別。在
我們的神經迴路研究中,我們觀察到頻率增昇、渾沌性的動作電位、異性的神
經同步以及週期性的動作電位叢集,我們更將此模型應用在秀麗隱桿線蟲的溫
度感應迴路(AWC、AFD以及AIY神經元),並觀察到對溫度之改變所產生的反
應行為。
摘要(英) Identifying the neural activity which translates a sensory input into behavioral output is
one of the central tasks of neuroscience. The nematode C. elegans serves as a model organism
in biology and its connectome of neural connections has been completely mapped.
C. elegans are capable of some simple behavior responses to external influences such as
chemotaxis and thermotaxis. The responsible neural circuits consisting of sensory neurons,
interneurons and motor neurons are subject of recent studies.
In this thesis we use an extended Fitzhugh-Nagumo model to study the dynamics of simple
neural circuits. The neurons are coupled via chemical synapses, which can excite and
inhibit the post-synaptic neuron. The neurotransmitter-receptor dynamics are governed
with a gating dynamic, which allows for the distinction between fast and slow synapses.
In our studies of the neural circuits we find frequency enhancement, chaotic spiking,
synchronization of fast and slow firing neurons and periodic bursting. We apply the
model to the temperature sensing circuit of the AWC, AFD and AIY neurons of the C.
elegans and reproduce the activity response to temperature change.
關鍵字(中) 關鍵字(英) ★ C. elegans
★ Fitzhugh-Nagumo model
★ chemical synapses
★ functional neural circuit
論文目次 1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 C. elegans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Mathematical tools 10
2.1 Electrical properties of Neurons . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 The Hodgkin-Huxley model . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 The Fitzhugh-Nagumo model . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Neurotransmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.5 The extended FHN model with chemical synapses . . . . . . . . . . . . . . 21
3 Case studies of simple neural circuits 25
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 Single neuron with self connections . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Two neuron interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4 Slow synapses and chaotic skipping . . . . . . . . . . . . . . . . . . . . . . 39
3.5 Periodic bursting in a two-neuron circuit . . . . . . . . . . . . . . . . . . . 40
4 Two sensory neurons regulate thermotaxis in C. elegans 50
參考文獻 [1] http://en.wikipedia.org/wiki/File:CelegansGoldsteinLabUNC.jpg
[2] Genome sequence of the nematode C. elegans: a platform for investigating biology,
Science 282: 2012–2018 (1998)
[3] J. G.White et al., The Structure of the Nervous System of the Nematode Caenorhabditis
elegans, Phil Trans R Soc Lond B 314: 1165(1986)
[4] L. Varshney, Structural Properties of the Caenorhabditis elegans Neuronal Network,
PLoS Comput Biol 7(2) (2011)
[5] Ward S., Chemotaxis by the nematode C. elegans: identification of attractants
and analysis of the response by use of mutants, Proc Natl Acad Sci USA 70:
817–821(1973)
[6] E. Hedgecock, Russell R., Normal and mutant thermotaxis in the nematode C.
elegans, Proc Natl Acad Sci USA 72: 4061–4065 (1975)
56
[7] A. Chang et al, A distributed chemosensory circuit for oxygen preference in C.
elegans, PLoS Biol 4: e274 (2006)
[8] J. Culotti, R. Russell, Osmotic avoidance defective mutants of the nematode C.
elegans, Genetics 90: 243–256 (1978)
[9] Y. Sambongi et al, Sensing of cadmium and copper ions by externally exposed
ADL, ASE, and ASH neurons elicits avoidance response in C. elegans, Neuroreport
10: 753–757 (1999)
[10] L. Tsalik, O. Hobert, Functional mapping of neurons that control locomotory behavior
in C. elegans, J Neurobiol 56: 178–197 (2003)
[11] D. Clark et al, Temporal Activity Patterns in Thermosensory Neurons of Freely
Moving Caenorhabditis elegans Encode Spatial Thermal Gradients, The Journal of
Neuroscience 27(23): 6083-6090 (2007)
[12] H. Ha et al, Functional Organization of a Neural Network for Aversive Olfactory
Learning in Caenorhabditis elegans, Neuron 68 Issue 6: 1173-1186 (2010)
[13] J. Pierce-Shimomura, The Fundamental Role of Pirouettes in Caenorhabditis elegans
Chemotaxis, The Journal of Neuroscience 1: 9557-9569 (1999)
[14] I. Mori and Y. Ohshima, Neural regulation of thermotaxis in Caenorhabditis elegans,
Nature 376: 344 - 348 (2002)
[15] I. Mori et al, Temperature Sensing by an Olfactory Neuron in a Circuit Controlling
Behavior of C. elegans, Science 320 no. 5877: 803-807 (2008)
57
[16] N. Dunn et al, A Neural Network Model of Chemotaxis Predicts Functions of Synaptic
Connections in the Nematode Caenorhabditis elegans, Journal of Computational
Neuroscience 17, Number 2: 137-147 (2004)
[17] N. Dunn et al, Circuit Motifs for Spatial Orientation Behaviors Identified by Neural
Network Optimization, J Neurophysiol 98: 888 – 897 (2007)
[18] Mori et al, Bidirectional regulation of thermotaxis by glutamate transmissions in
Caenorhabditis elegans, EMBO J. 30(7): 1376–1388 (2011)
[19] http://upload.wikimedia.org/wikipedia/commons/3/30/Chemical_synapse_schema_cropped.jpg
[20] A. Hodgkin and A. Huxley, A quantitative description of membrane current and its
application to conduction and excitation in nerve, J. Physiol. (London) 117: 500–
544 (1952)
[21] A. Borisyuk et al, Tutorials in mathematical Biosciences I: 50-51 (2005)
[22] http://www.math.pitt.edu/~bard/xpp/xpp.html
[23] R. Phillips, Physical Biology of the Cell, 96 (2008)
指導教授 黎璧賢(Pik-Yin Lai) 審核日期 2012-8-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明