博碩士論文 972402003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.128.204.140
姓名 陳重維(Chung-Wei Chen)  查詢紙本館藏   畢業系所 物理學系
論文名稱 氧化鋅與石墨烯材料成長機制與特性研究
(Growth mechanism and characterizations of graphene and ZnO nanostructure)
相關論文
★ 氫氣的調控對化學氣相沉積法成長石墨烯之影響★ 氮化銦鎵/氮化鎵多重量子井的激發光譜
★ 中子質化氮化鎵材料之特性研究★ 鐵磁/超導/鐵磁單電子電晶體的製作與電子自旋不平衡現象的量測
★ 砷化鎵金屬半導體場效電晶體中p型埋藏層之效應★ 熱處理對氮化銦鎵量子井雷射結構之影響與壓電效應之分析
★ 離子佈植摻雜氮化鎵薄膜的光、電、結構特性之分析★ 離子佈植技術應用於高亮度發光二極體之設計與製作
★ 矽離子佈植氮化鎵薄膜之電性研究★ 繞射式元件之製程及特性分析
★ 氮化銦鎵/氮化鎵量子井之光特性研究★ 矽離子佈植在P型氮化鎵的材料分析與 元件特性之研究
★ 氮化鎵高數值孔徑微透鏡之設計、製作與特性分析★ 微凹平面鏡及矽光學桌之組裝設計
★ 指叉型氮化鎵發光二極體之設計製作與量測★ 氮化鎵光偵測器的暗電流與激子效應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在本論文,我們將研究以化學氣相沈積法在不同方向性的基板上成長出a, c, m三種不同方向性之氧化鋅薄膜及氧化鋅奈米線。
沿c軸成長之氧化鋅薄膜,其光激螢光光譜數據顯示隨著氧化鋅薄膜厚度從0.4um增加到1.3um, 其光激螢光光譜峰值將由3.3eV藍移到3.26eV。光激螢光光譜訊號藍移原因是氧化鋅薄膜厚度薄其晶格應力越大,這也同時由XRD數據證實氧化鋅薄膜的晶格受應力壓縮。
在非極性的氧化鋅材料成長方面,我們利用非極化的a-plane 氮化鎵基版成長出單晶非極性之a-plane 氧化鋅奈米線,由SEM結果判斷,因為a-plane氧化鋅奈米線延著(110)方向成長,所以a-plane氧化鋅奈米線和基版夾角為30度, 從a-plane奈米線表面形貌分析其成長機制為vw 模式。與c-plane 氧化鋅奈米線的SK模式不同,推測其原因是 a-plane的自由能較低。
我們同時在m-plane p型氮化鎵基版上成長出n型氧化鋅薄膜,並將其做成非極性異質接面發光二極體。其電激螢光發光波長為458奈米,且在不同電流(10,20,40mA)的注入下,其發光波長並未產生紅移或藍移現象。
在石墨烯的成長方面,我們藉由調控CH4的流量與成長時間控制,可以得到單層碳原子所組成的石墨烯或者是多層石墨烯。在應用方面,因為石墨烯的疏水性造成金屬與石墨烯的接觸電阻極大。我們利用臭氧清潔石墨烯表面,使接觸電阻降低為千分之一。另外,利用石墨烯接觸面積大的特性,我們成功制備出以單層石墨烯為反應層的氧氣偵測器,在低於500ppm的氧濃度情況下,仍可以發現明顯的電流變化。
摘要(英) In this thesis, we will discuss ZnO material with different orientation grown on various substrates and graphene grown on copper foil by home-made atmospheric pressure chemical vapor deposition.
For c-plane ZnO films growth, the thin films were grown on c-plane GaN templates. The surface morphology of ZnO film depended on growth temperature and growth time. From photoluminescence (PL) spectrum, near band edge peak suggest that the film stress could be responsible for the blue shift, which corresponding to the XRD results.
For the a-plane ZnO nanowires growth, the ZnO nanowires were grown on a-plane GaN templates without employing any catalyst. The growth mechanism on a-GaN was the Volmer-Weber (VW) mode and differed from the Stranski-Krastanow (SK) mode observed for growth on c-GaN. This difference results from the higher interfacial free-energy on the a-plane between ZnO and GaN than that on the c-plane orientation.
m-plane ZnO thin film were successfully grown on m-plane p-GaN and be fabricated a heterosturctured light emitting diodes. I-V measurement result shows the turn on voltage was 6 volt and the electroluminescent emission peak was at 458 nm in room temperature with different injected current.
Monolayer and few-layer of high-quality graphene have been grown on copper foils with different H2/ CH4 gas ratio by chemical vapor deposition at 17torr. The combination of UV ozone exposure prior to metal contact deposition and annealing of the contacts produces minimum specific contact resistances values of 7x10-7 Ω-cm2 for Ti/Au on graphene layers on SiO2/Si substrates. This is an attractive option for cleaning the graphene surface without issues related to energetic ions in O2 plasma exposures. For application, graphene sensor showed rapid change in the current when exposed to different O2 concentration ambient at room temperature. These results show the potential of graphene for O2 sensing applications.
關鍵字(中) ★ 氧化鋅
★ 石墨烯
★ 化學氣相沈積法
關鍵字(英) ★ ZnO Graphene CVD
論文目次 中文摘要 1
英文摘要 1
誌謝 1
目錄 IV
Figure captions VI
Table captions 1
CHAPTER 1 Introduction 1
1-1 Background of Zinc oxide 1
1-2 Background of Graphene 6
1-3 Reference 10
CHAPTER 2 Growth mechanism and characterization of ZnO nanowires and thin film 13
2-1 Experiments 13
2-2 Morphology 15
2-3 Structure 22
2-4 Electrical and optical properties 30
2-5 Reference 37
CHAPTER 3 Growth mechanism and characterization of graphene 69
3-1 Experiments 70
3-2 Morphology 74
3-3 Optical and electrical property 75
3-4 Reference 79
CHAPTER 4 Applications of ZnO 91
4-1 CO sensor. 91
4-2 Light emitting diode. 99
4-3 Reference. 103
CHAPTER 5 Applactions of graphene 114
5-1 Effects of Semiconductor Processing Chemicals on Graphene. 114
5-2 Oxygen sensor sensor. 126
5-3 Reference 130
CHAPTER 6 CONCLUSIONS 145
參考文獻 [1] Claflin B, Look DC, Park SJ, Cantwell G. J Cryst Growth 2006;287:16.
[2] Hwang D-K, Oh M-S, Lim J-H, Park S-J. J Phys D Appl Phys 2007;40:R387.
[3] Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T. Prog Mater Sci 2005;50:293
[4] Pearton SJ, Norton DP, Ip K, Heo YW, Steiner T. J Vac Sci Technol B 2004;22:932.
[5] Coleman VA, Jagadish C. In: ZnO bulk, thin films and nanostructures. Oxford: Elsevier; 2006.
[6] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 73, 1038 (1998).
[7] Alivov YA, Kalinina EV, Cherenkov AE, Look DC, Ataev BM, Omaev AE, et al. Appl Phys Lett 2003;83:4719.
[8] Osinsky A, Dong JW, Kauser MZ, Hertog B, Dabiran AM, Chow PP, et al. Appl Phys Lett 2004;85:4272.
[9] Pan CJ, Tu CW, Tun CJ, Lee CC, Chi GC. J Cryst Growth 2007;305:133
[10] J.W. Sun, Y.M. Lu, Y.C. Liu, D.Z. Shen, Z.Z. Zhang, B.H. Li, J.Y. Zhang, B. Yao, D.X. Zhao, X.W. Fan, J. Phys., D, Appl. Phys. 41 (15) (2008) 155103.
[11] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002).
[12] D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, Appl. Phys. Lett. 70, 2230 (1997).
[13] Ohtomo, M. Kawasaki, Y. Sakurai, Y. Yoshida, H. Koinuma, P. Yu, Z. Tang, G. Wong, and Y. Segawa, Mater. Sci. Eng. B 54, 24 (1998).
[14] C. J. Pan, C. W. Tu, J. J. Song, G. Cantwell, C. C. Lee, B. J. Pong, and G. C. Chi, Proc. SPIE 5722, 410 (2005).
[15] K. Minegishi, Y. Koiwai, Y. Kikuchi, K. Yano, M. Kasuga, and A. Shimizu, Jpn. J. Appl. Phys., Part 2 36, L1453 (1997).
[16] K. Ogata, T. Kawanishi, K. Maejima, K. Sakurai, Sz. Fujita, and Sg. Fujita, Jpn. J. Appl. Phys., Part 2 40, L657 (2001).
[17] Chen, YF; Bagnall, DM; Koh, HJ, et al. JOURNAL OF APPLIED PHYSICS 1998 84 7 3912-3918
[18] Lin,H; Zhou,SM; Huang,TH JOURNAL OF ALLOYS AND COMPOUNDS 2009 467 L8-L10
[19] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol.B 22, 932 (2004).
[20] H. P. Maruska and J. J. Tietjen, Appl. Phys. Lett. 15, 327 (1969).
[21] Quang LH, Jin CS, Fitzgerald EA (Weinheim, Ger.). Adv Mater 2006;23:465.
[22] Konenkamp R, Word RC, Schlegel C. Appl Phys Lett 2006;85:6004.
[23] Chang CY, Tsao FC, Pan CJ, Chi GC, Wang HT, Chen JJ, et al. Appl Phys Lett 2006;88:173503.
[24] S. Stankovich, D. A. Dikin, G. H. B. Dommett, K. M. Kohlhaas, E. J. Zimney, E. A. Stach, R. D. Piner, S. T. Nguyen, and R. S. Ruoff, Nature 442, 282 (2006).
[25] S. Watcharotone, Nano Lett. 7, 1888 (2007). 8C.-A. Di, D. Wei, G. Yu, Y. Liu, Y. Guo, and D. Zhu, Adv. Mater. 20, 3289 (2008).
[26] X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2007).
[27] H. A. Becerill, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen,ACS Nano 2, 463 (2008).
[1] C. C. Yu, C. F. Chu, J. Y. Tsai, H. W. Huang, T. H. Hsueh, C. F. Lin, and S. C.Wang, Jpn. J. Appl. Phys. 41, L910 (2002).
[2] W. Han, S. Fan, Q. Li, Y. Hu, Science 277, 1287 (1997).
[3] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C.Chen, J. Y. Peng, and Y. F. Chen, J. Am. Chem. Soc. 123, 2791 (2001).
[4] Z. H. Lan, C. H. Liang, C. W. Hsu, C. T. Wu, H. M. Lin, S. Dhara, K. H. Chen, L.C. Chen, and C. C. Chen, Adv. Funct. Mater. 14, 233 (2004).
[5]. X. F. Duan, C. M. Lieber, J. Am. Chem. Soc. 122, 188 (2000).
[6] A. L. Barabasi, Mater. Scie. Eng. B 67 23 (1999)
[7] Pan, C. J., Tu, C. W., Tun, C.J., Lee, C.C. and Chi, G.C., 2007, J. Cryst. Growth 305, 133.
[8] Eaglesham, D.J., and Cerullo, M., 1990, Phys. Rev. Lett. 64, 1943.
[9] C. J. Tun, C. H. Kuo, Y. K. Fu, C. W. Kuo, M. M. C. Chou, and G. C. Chi, “Growth and characterization of cpl LiAlO2,” J. Cryst. Growth 311(14), 3726–3730 (2009).
[10] J.W. Sun, Y.M. Lu, Y.C. Liu, D.Z. Shen, Z.Z. Zhang, B.H. Li, J.Y. Zhang, B. Yao, D.X. Zhao, X.W. Fan, J. Phys., D, Appl. Phys. 41 (15) (2008) 155103.
[11] Quang, L.H., Jin, C.S., and Fitzgerald, E.A., 2006, Adv. Mater. (Weinheim, Ger.) 23, 465.
[12]. R. Konenkamp, R. C. Word, and C. Schlegel, Appl. Phys. Lett. 85, 6004 (2006).
[13] Chang, C.Y., Tsao, F.C., Pan, C.J., Chi, G.C.,Wang, H.T., Chen, J.J., Ren, F., Norton, D.P., Pearton, S.J., Chen, K.H., and Chen, L.C., 2006, Appl. Phys. Lett. 88, 173503.
[14] Liang, W.Y., and Yoffe, A.D., 1968, Phys. Rev. Lett. 20, 59.
[15] Chen, G.,. Craven, M., Kim, A., Munkholm, A., Watanabe, S. Camras, M., Gotz, W., and Steranka, F., 2008, Physica Status Solidi (a) 205, 1086.
[16] Paskov, P.P., Monemar, B. Iida, D. Kawashima, T. Iwaya, M. Kamiyama, S., Amano, H., and Akasaki, I.,2008, Physica Status Solidi (c ) 5, 1768.
[17] Cho, J.S., Sun, Q., Lee, I.H., Ko, T.S., Jerino, C.D., Han, J., Hong,B.H.,. Cho, H.K.,and Wang, S., 2008, Appl. Phys. Lett. 93, 111904.
[18] Wang, Z.L., in ZnO Bulk, Thin Films and Nanostructures, ed. C. Jagadish and S.J. Pearton, Elsevier, Oxford, 2006
[19] Wang, Z.L. Kong, X.Y., and Zuo, J.M., 2003, Phys. Rev. Lett. 91, 185502.
[20] Park, W.I., and Yi, G.C., 2004, Adv. Mater. 16, 87.
[21] Wang, Z.L., 2007, Adv. Mater.19, 889.
[22] Heo, Y. W., Norton, D.P., Tien, L.C.,Kwon, Y., Kang, B.S., Ren, F., Pearton, S.J., and LaRoche, J.R., 2004, Mat. Sci. Eng. R 47,1.
[23] Pan, C. J., Tu, C. W., Tun, C.J., Lee, C.C. and Chi, G.C., 2007, J. Cryst. Growth 305, 133.
[24] Eaglesham, D.J., and Cerullo, M., 1990, Phys. Rev. Lett. 64, 1943.
[25] Srikant, V., and Clarke, D.R., 1997, J. Appl. Phys. 81, 6357.
[26] J.-M. Jang, C.-R. Kim, H. Ryu, M. Razeghi, and W.-G. Jung, “ZnO 3D flower-like nanostructure synthesized on GaN epitaxial layer by simple route hydrothermal process,” J. Alloy. Comp. 463(1-2), 503–510 (2008).
[27] J. Jang, J. Kim, and W. Jung, “Synthesis of ZnO nanorods on GaN epitaxial layer and Si (100) substrate using a simple hydrothermal process,” Thin Solid Films 516(23), 8524–8529 (2008).
[28] B. J. Jin, S. Im, and S. Y. Lee, “Violet and UV luminescence emitted from ZnO thin films grown on sapphire by
pulsed laser deposition,” Thin Solid Films 366(1-2), 107–110 (2000).
[29] T. Mukai and S. Nakamura, “Ultraviolet InGaN and GaN Single-Quantum-Well-Structure Light-Emitting Diodes Grown on Epitaxially Laterally Overgrown GaN Substrates,” Jpn. J. Appl. Phys. 38(Part 1, No. 10), 5735–5739 (1999).
[30] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, “Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-currentindependent electroluminescence emission peak,” Appl. Phys. Lett. 85(22), 5143–5145 (2004).
[31] P. Kozodoy, A. Abare, R. K. Sink, M. Mack, S. Keller, S. P. DenBaars, U. K. Mishra, and D. Steigerwald, “MOCVD growth of high output power InGaN multiple quantum well light emitting diode,” Mater. Res. Soc. Symp. Proc. 468, 481–486 (1997).
指導教授 紀國鐘(Gou-Chung Chi) 審核日期 2012-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明