參考文獻 |
[1] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson and S. R. Forrest, “Highly efficient phosphorescent emission from organic electroluminescent devices,” Nature 395, 151-154 (1998)
[2] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048-5051 (2001)
[3] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund and W. R. Salaneck, “Electroluminescence in conjugated polymers,” Nature 397, 121-128 (1999)
[4] D. Gebeyehu, K. Walzer, G. He, M. Pfeiffer, K. Leo, J. Brandt, A. Gerhardt, and H. Vestweber, “Highly efficient deep-blue organic light emitting diodes with doped transport layers,” Synthetic Metals, 148, 2, 205–211 (2005)
[5] P. J. Delfyett, Ed., “Special issue on High-Efficiency Light-Emitting Diodes,” ser. IEEE Journal of Selected Topics in Quantum Electronics, 8. (2002)
[6] F. Ebisawa, T. Kurokawa, S. Nara, "Electrical Properties of Polyacetylene/Polysiloxane Interface," J. Appl. Phys. 54, 3255-3259 (1983)
[7] K. Kudo, M. Yamashina, T. Moriizumi, “Field effect measurement of organic dye films,” Jpn. J. Appl. Phys. 23, 130 (1984)
[8] A. Tsumura, H. Koezuka, and T. Ando, “Macromolecular electronic device: Field-effect transistor with a polythiophene thin film,” Appl. Phys. Lett. 49, 18, 1210–1212 (1986)
[9] C. W. Tang and A. C. Albrecht, “Photovoltaic effects of metal--chlorophyll-a--metal sandwich cells,” J. Chem. Phys. 62, 2139-2149 (1975)
[10] C. W. Tang, “Two-layer organic photovoltaic cell,” Appl. Phys. Lett. 48, 183-185 (1986)
[11] J. Xue, S. Uchida, B. P. Rand, and S. R. Forrest, “4.2% efficient organic photovoltaic cells with low series resistances,” Appl. Phys. Lett. 84, 3013-3015 (2004)
[12] M. Reyes-Reyes, K. Kim, and D. L. Carroll, “High-efficiency photovoltaic devices based on annealed poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1- phenyl-(6,6)C61 blends,” Appl. Phys. Lett. 87, 083506 (2005)
[13] J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T.-Q. Nguyen, M. Dante, and A. J. Heeger, “Efficient tandem polymer solar cells fabricated by all-solution processing,” Science, 317, 5835, 222–225 (2007)
[14] A. Colsmann, J. Junge, C. Kayser, and U. Lemmer, “Organic tandem solar cells comprising polymer and small-molecule subcells,” Appl. Phys. Lett. 87, 203506 (2006)
[15] M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gartner, M. Gerken, and U. Lemmer, “Dynamic characterization of organic bulk heterojunction photodetectors,” Appl. Phys. Lett. 91, 071118 (2007)
[16] F. Hide, M. A. Dý´az-Garcý´a, B. J. Schwartz, M. R. Anderson, Q. Pei, and A. J. Heeger, “Semiconducting Polymers: A New Class of Solid-State Laser Materials,” Science 273, 1833-1836 (1996)
[17] N. Tessler, G.J. Denton, and R.H. Friend, “Lasing from conjugated-polymer microcavities,” Nature 382, 695-697 (1996)
[18] S. V. Frolov, M. Ozaki, W. Gellerman, Z.V. Vardeny, and K. Yoshino, “Mirrorless lasing in conducting polymer poly (2,5-dioctyloxy-p- phenylenevinylene films,” Jpn. J. Appl. Phys., Part 1 35, L1371-L1373 (1996)
[19] M.D. McGehee, R. Gupta, S. Veenstra, E. K. Miller, M. A. Diaz-Garcia, and A.J. Heeger, “Amplified spontaneous emission from photopumped films of a conjugated polymer,” Phys. Rev. B 11, 7035 (1998)
[20] H. Nakanotani, C. Adachi, S. Watanabe, and R. Katoh, “Spectrally narrow emission from organic films under continuous-wave excitation,” Appl. Phys. Lett. 90, 231109, 2007.
[21] D. Yokoyama, M. Moriwake, and C. Adachi, “Spectrally narrow emissions at cutoff wavelength from edges of optically and electrically pumped anisotropic organic films,” J. Appl. Phys. 103, 123104 (2008)
[22] Y. Tian, Z. Gan, Z. Zhou, D.W. Lynch, J. Shinar, J. Kang, and Q. Park, “Spectrally narrowed edge emission from organic light-emitting diodes,” Appl. Phys. Lett. 91, 143504 (2007)
[23] F. J. Duarte, L. S. Liao, and K. M. Vaeth, “Coherence characteristics of electrically excited tandem organic light-emitting diodes,” Opt. Lett. 30, 3072-3074 (2005)
[24] F. J. Duarte, “Coherent electrically excited organic semiconductors: visibility of interferograms and emission linewidth,” Opt. Lett. 32, 412-414 (2007)
[25] X. Liu, H. Li, C. Song, Y. Liao, and M. Tian, “Microcavity organic laser device under electrical pumping,” Opt. Lett. 34, 503-505 (2009)
[26] Christian Grätner, “Organic Laser Diodes Modelling and Simulation”, universitatsverlag karlsruhe (2008)
[27] L. Candeias, G. Padmanaban, and S. Ramakrishnan, “The effect of broken conjugation on the optical absorption spectra of the triplet states of isolated chains of poly(phenylene vinylene)s,” Chem. Phys. Lett. 349, 394–398 (2001)
[28] M. Deussen and H. Bassler, “Anion and cation absorption spectra of conjugated oligomers and polymers,” Chem. Phys. Lett. 164, 247–257 (1992)
[29] M. Baldo, D. O’Brien, M. Thompson, and S. Forrest, “Excitonic singlet-triplet ratio in a semiconducting organic thin film,” Phys. Rev. B 60, 20, 14 422–14 428 (1999)
[30] H. Nakanotani, H. Sasabe, and C. Adachia, “Singlet-singlet and singlet-heat annihilations in fluorescence-based organic light-emitting diodes under steadystate high current density,” Appl. Phys. Lett. 86, 213506 (2005)
[31] C. Rothe, S. King, and A. Monkman, “Electric-field-induced singlet and triplet exciton quenching in films of the conjugated polymer polyspirobifluorene,” Phys. Rev. B 72, 085220 (2005)
[32] J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. D. Marco, “Quenching effects in organic electrophosphorescence,” Phys. Rev. B 66, 235321 (2002)
[33] X. Liu, C. Py, Y. Tao, Y. Li, J. Ding, and M. Day, “Low-threshold amplified spontaneous emission and laser emission in a polyfluorene derivative,” Appl. Phys. Lett. 84(15), 2727–2729 (2004)
[34] G. Heliotis, R. Xia, D. D. C. Bradley, G. Heliotis, R. Xia, D. D. C. Bradley, P. Andrew, and W. L. Barnes, “Blue, surface-emitting, distributed feedback polyfluorene lasers,” Appl. Phys. Lett. 83(11), 2118–2120 (2003)
[35] S. Riechel, C. Kallinger, U. Lemmer, J. Feldmann, A. Gombert, V. Wittwer, and U. Scherf, “A nearly diffraction limited surface emitting conjugated polymer laser utilizing a two-dimensional photonic band structure,” Appl. Phys. Lett. 77(15), 2310–2312 (2000)
[36] M. Meier, A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, “Laser action from two-dimensional distributed feedback in photonic crystals,” Appl. Phys. Lett. 74(1), 7–9 (1999)
[37] A. E. Vasdekis, G. Tsiminis, J.-C. Ribierre, L. O’ Faolain, T. F. Krauss, G. A. Turnbull, and I. D. Samuel, “Diode pumped distributed Bragg reflector lasers based on a dye-to-polymer energy transfer blend,” Opt. Express 14(20), 9211–9216 (2006)
[38] S. E. Burns, G. Denton, N. Tessler, M. A. Stevens, F. Cacialli, and R. H. Friend, “High finesse organic microcavities,” Opt. Mater. 9(1-4), 18–24 (1998)
[39] A. E. Vasdekis, S. A. Moore, A. Ruseckas, T. F. Krauss, I. D. W. Samuel, and G. A. Turnbull, “Silicon based organic semiconductor laser,” Appl. Phys. Lett. 91(5), 1–3 (2007)
[40] A. E. Vasdekis, G. A. Turnbull, I. D. W. Samuel, P. Andrew, and W. L. Barnes, “Low threshold edge emitting polymer distributed feedback laser based on a square lattice,” Appl. Phys. Lett. 86(16), 1–3 (2005)
[41] B. Michael, D. McGehee, and A. J. Heeger, “Semiconducting (Conjugated) Polymers as Materials for Solid-State Lasers,” Adv. Material 12, 1655-1668 (2000)
[42] M. Chakaroun, A. Coens, N. Fabre, F. Gourdon, J. Solard, , A. Fischer, A. Boudrioua, and C.C. Lee, “Optimal design of a microcavity organic laser device under electrical pumping,” Opt. Express 19(2), 493-505 (2011).
[43] J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burn, and A. Holmes, “Light-emitting diodes based on conjugated polymers,” Nature 347, 539–541 (1990)
[44] V. Kozlov, V. Bulovic, P. Burrows, and S. Forrest, “Laser action in organic semiconductor waveguide and double-heterostructure devices,” Nature 389, 362–364 (1997)
[45] M. Berggren, A. Dodabalapur, R. Slusher, and Z. Bao, “Light amplification in organic thin films using cascade energy transfer,” Nature 389, 466–469 (1997)
[46] P. A. Levermore, R. Xia, W. Lai, X. H.Wang, W. Huang, and D. D. C. Bradley, “Deep-blue light emitting triazatruxene core/oligo-fluorene branch dendrimers for electroluminescence and optical gain applications,” J. Appl. Phys. 40, 7, 1896–1901 (2007)
[47] S.-C. Lo and P. Burn, “Development of dendrimers: Macromolecules for use in organic light-emitting diodes and solar cells,” Chem. Rev. 107, 1097–1116 (2007)
[48] H. Haken and H. Wolf, “Molekülphysik und Quantenchemie,” Berlin: Springer Verlag (1998)
[49] A. Jaboski, “Efficiency of anti-Stokes fluorescence in dyes,” Nature 131, 839-840 (1933)
[50] H. Bässler, G. Schönherr, M. Abkowitz, and D. Pai, “Hopping transport in prototypical organic glasses,” Phys. Rev. B 26, 3105-3113 (1982)
[51] 陳金鑫, “夢幻顯示器:OLED材料與元件”, 五南圖書出版社 (2009)
[52] 李正中, “薄膜光學與鍍膜技術(第六版)”, 藝軒圖書出版社 (2009)
[53] R. H. Jordan, L. J. Rothberg, A. Dodabalapur, R. E. Slusher. “Efficiency enhancement of microcavity organic light emitting diodes,” Appl. Phys. Lett. 69, no.14. 1997-1999 (1996)
[54] S. Tokito, T. Tsutsui, Y. Taga. “Microcavity organic light-emitting diodes for strongly directed pure red, green, and blue emissions,” J. Appl. Phys. 86, no.5. 2407-2411 (1999)
[55] A. Dodabalapur, L. J. Rothberg, R. H. Jordan, T. M. Miller, R. E. Slusher, and J. M. Phillips, “Physics and applications of organic microcavity light emitting diodes,” J. Appl. Phys. 80, 12 (1996)
[56] E. Fred Schubert, “Refractive index and extinction coefficient of materials,” http://homepages.rpi.edu/~schubert/ (2004)
[57] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg, “Enhanced Spontaneous Emission by Quantum Boxes in a Monolithic Optical Microcavity,” Phys. Rev. Lett. 81, 1110-1113 (1998).
[58] M. Colle, C. Garditz, “Delayed fluorescence and phosphorescence of tris-(8-hydroxyquinoline)aluminum (Alq3) and their temperature dependence,” J. Lumin. 110, 200-206 (2004)
[59] R. P. Stanley, R. Houdré, C. Weisbuch, U. Oesterle, and M. Ilegems, “Cavity-polariton photoluminescence in semiconductor microcavities: Experimental evidence,” Phys. Rev. B 53, 10995–11007 (1996)
|