博碩士論文 995203015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:112 、訪客IP:3.144.31.86
姓名 謝佳斌(Chia-Bin Hsieh)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 AAC壓縮域翻唱歌曲辨識系統
(Cover Song Identification in AAC Compression Domain)
相關論文
★ 基於區域權重之衛星影像超解析技術★ 延伸曝光曲線線性特性之調適性高動態範圍影像融合演算法
★ 實現於RISC架構之H.264視訊編碼複雜度控制★ 基於卷積遞迴神經網路之構音異常評估技術
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 基於時序卷積網路之單FMCW雷達應用於非接觸式即時生命特徵監控
★ 視訊隨選網路上的視訊訊務描述與管理★ 基於線性預測編碼及音框基頻週期同步之高品質語音變換技術
★ 基於藉語音再取樣萃取共振峰變化之聲調調整技術★ 即時細緻可調性視訊在無線區域網路下之傳輸效率最佳化研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著多媒體壓縮技術以及網際網路的蓬勃發展,使用者可透過網際網路下載或分享各種多媒體影音資料,然而,其影音內容卻可能是受版權保護而使用者在不知情的狀況下因此觸法。在本論文中對於AAC 音訊壓縮格式提出翻唱歌曲辨識系統,其目標為快速檢索到資料庫內的原唱版本。從商業的角度來看,對於音樂的版權及管理是相當重要的,另一方面,對於使用者可以找到不同版本的歌曲既是有趣又實用。
在我們所提出的壓縮域翻唱歌曲辨識系統中,直接透過部分解碼得到音訊串流中的改良式餘弦轉換係數,將其重新定義到西方樂理上的十二平均率,在特徵擷取的步驟可以降低完全解碼的過程,並且利用音段切割降低特徵的時間維度以提升比對效率。因此,我們整體的系統可以省下很多運算複雜度,而且目前系統辨識準確率在Top-1 已達到60%。在實際應用層面,對於檢索大量已編碼過的多媒體影音資料,我們的系統提供一個快速且準確地搜尋方法。
摘要(英) With the rapid development of multimedia compression technology and Internet in recent years, users can easily download or share any kind of videos or music from networks. However, the downloaded contents may be copyrighted. In this work, we propose a system which can automatically identify cover version songs in AAC compression domain. Our goal is to fast retrieve the original version songs in a large coded database. From the commercial perspective, it is important to detect cover songs for musical copyrights’ management and licenses. Besides, it is interesting and useful to find out all versions for a particular song.
In our proposed system, the modified discrete cosine transform (MDCT) spectral coefficients are directly used to represent 12-dimensional chroma feature without a fully decoding process. In addition, we utilize segmentation to reduce time dimension in feature space for promoting the matching efficiency. Our overall system can save a lot of computation complexity and reach approximately 60% accuracy in Top-1. In practical applications, our system provides a good solution for retrieval system with large amount of coded multimedia files.
關鍵字(中) ★ 翻唱歌曲
★ AAC
★ 壓縮域
★ 音樂檢索
關鍵字(英) ★ cover song
★ AAC
★ compression
★ music information retrieval
論文目次 第一章緒論1
1.1 研究背景1
1.2 研究動機與目的2
1.3 論文架構2
第二章音樂檢索與音訊壓縮技術簡介4
2.1 音樂檢索之簡介4
2.1.1 音樂特性元素6
2.1.2 翻唱歌曲辨識9
2.2.3 壓縮域之音樂檢索相關文獻介紹11
2.2 音訊壓縮技術簡介13
2.2.1 MPEG-1 Layer III14
2.2.2 Advanced Audio Coding15
第三章AAC 壓縮域翻唱歌曲辨識系統17
3.1 音訊特徵擷取18
3.2 音段分割23
3.3 相似度比對方法25
3.3.1 二值相似矩陣25
3.3.2 區域排比動態規劃法27
第四章 實驗數據與分析32
4.1 系統效能評估方式簡介32
4.2 實驗環境與運算複雜度評估33
4.3 翻唱歌曲檢索系統效能分析37
第五章 結論及未來展望42
參考文獻44
附錄 A – 樂器動態頻率分布圖47
附錄 B – 翻唱歌曲版權問題
參考文獻 [1] M. A. Casey, R. Veltkamp, M. Goto, M. Leman, C. Rhodes, and M. Slaney, “Content-Based Music Information Retrieval:Current Directions and Feature Challenges,” in Proc. of the IEEE, vol. 96 no. 4, pp. 668-696, April 2008.
[2] 侯志欽,聲學原理與多媒體音訊科技,初版,台灣商務印書館,台北市,民國九十六年。
[3] 陳仁寬,樂理入門與指導,初版,五洲出版有限公司,台北市,民國八十五年。
[4] Music Information Retrieval Evaluation eXchange. http://www.music-ir.org/mirex/wiki/2006:Main_Page
[5] J. Serra, E. Gomez, and P. Herrera, “Audio cover song identification and similarity: background, approaches, evaluation, and beyond,” Advances in Music Information Retrieval, vol. 274, ch. 14, pp. 307-332, March 2010.
[6] D. P. W. Ellis, and G.E. Poliner, “Identifying ‘Cover Songs’with Chroma Features and Dynamic Programming Beat Tracking,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Honolulu, Hawaii, U.S.A., pp. 1429-1432, April 15-20, 2007.
[7] J. Serra, and E. Gomez, “Audio cover song identification based on tonal sequence alignment,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Las Vegas, Nevada, U.S.A., pp.61-64, March 30- April 4, 2008.
[8] S. Ravuri and D. P. W. Ellis, “Cover song detection: From high scores to general classification,” in Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Dallas, Texas, U.S.A., pp. 65-68, March 14-19, 2010.
[9] E. Ravelli, G. Richard, and L. Daudet, “Audio Signal Representations for Indexing in the Transform Domain,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 18, no. 3, pp. 434-446, March. 2010.
[10] H. Wang, A. Divakaran, A. Vetro, S. Chang, and H. Sun,“Survey of Compressed-Domain Features Used in Audio-Visual Indexing and Analysis,” Journal of Visual Communication and Image Representation, vol. 14, no. 2, pp. 150-183, June 2003.
[11] T. H. Tsai and Y. T. Wang, “Content-Based Retrieval of Audio Example on MP3 Compression Domain,” in Proc. IEEE 6th Workshop on Multimedia Signal Processing, pp.123-126, September 2004.
[12] T. H. Tsai and W. C. Chang, “Two-Stage Method for Specific Audio Retrieval based on MP3 Compression Domain,” in Proc. IEEE International Symposium on Circuits and Systems, pp. 713-716, May 2009.
[13] C. C. Liu and C. S. Huang, “A singer identification technique for content-based classification of MP3 music objects,” in Proc. Int. Conf. on Information and Knowledge Management, McLean, Virginia, U.S.A., pp. 438-445, November 4-9, 2002.
[14] D. Pan, “A Tutorial on MPEG/Audio Compression,” IEEE Multimedia Magazine, summer 1995, pp. 60-74.
[15] International Organization for Standardization, “Information Technology - Coding of Moving Pictures and Associated Audio for Digital Storage Media at up to about 1.5 Mbit/s - Part 3:Audio,” ISO/IEC 11172-3, March 1999.
[16] International Organization for Standardization, “Information Technology - Generic coding of moving pictures and associated audio information - Part 7:Advanced Audio Coding (AAC), ”ISO/IEC 13818-7, 1997.
[17] International Organization for Standardization, “Information Technology - Coding of audio-visual objects - Part 3: Audio,”ISO/IEC DIS 14496-3, 1998.
[18] M. Muller, D. P. W. Ellis, A. Klapuri, and G. Richard, “Signal Processing for Music Analysis,” IEEE Journal of Selected Topics in Signal Processing, vol. 5, no.6, pp.1088-1110, October 2011.
[19] The musical instrument dynamic ranges and names:http://en.wikipedia.org/wiki/Range_(music)#cite_note-M29-0
[20] Instrument frequency dynamic ranges poster:http://www.independentrecording.net/irn/resources/freqchart/main_display.htm
[21] J. Serra, E. Gomez, P. Herrera, and X. Serra, “Chroma Binary Similarity and Local Alignment Applied to Cover Song Identification,” IEEE Transactions on Audio, Speech, and Language Processing, vol. 16, no. 6, pp. 1138-1151, August 2008.
[22] The Cover 80 cover song data set : http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
[23] T. H. Tsai and C. Liu, “A Configurable Common Filterbank Processpr for Multi-Standard Audio Decoder,” IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences, vol. 90, no.9, pp. 1913-1923, September 2007.
[24] T. Bertin-Mahieux and D. P. W. Ellis, “Large-scale cover song recongnition using hashed chroma landmarks,” in Proc. IEEE Workshop on Application of Signal Processing to Audio and Acoustics, New Paltz, NY, U.S.A., pp.117-120, October 16-19, 2011.
指導教授 張寶基(Pao-Chi Chang) 審核日期 2012-7-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明