博碩士論文 995203013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.223.125.110
姓名 王玟鑌(Wen-Bin Wang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 多細胞正交分頻多重接取系統下使用部分頻率重複機制之資源配置演算法
(Dynamic Resource Allocation in Fractional Frequency Reused Multi-Cell OFDMA Systems)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出在部分頻率重複機制下的子載波配置演算法,目標為考慮使用者吞吐量總和最大化與使用者的傳輸需求量,應用在多細胞正交分頻多重接取下鏈系統。因為在多細胞網路中,將會面臨相當嚴重的細胞間干擾,使得服務品質下降,因此我們採用動態部分頻率重複機制,將子載波分為超級群組和普通群組,藉由動態地調整子載波的複用指數來提高訊號對干擾及雜訊比。
此問題可以分成兩部分來探討: 首先在頻譜配置部分,我們根據提出的配置機制,動態地將子載波分派至超級群組和普通群組。接著在子載波配置部分,我們也根據提出的配置演算法將各個子載波分配給使用者。
最後由模擬結果得知,我們提出的演算法架構能夠在系統的吞吐量與使用者的傳輸需求量,取得不錯的平衡。
摘要(英) In this thesis, a frequency allocation scheme is proposed for multi-cell OFDMA systems in downlink, where the objective considers balancing between the maximization of the system throughput and the satisfaction of the user’s minimum data rate requirement. Due to the severe co-channel interference for cellular networks with full frequency reuse, the dynamic fractional frequency reuse scheme is adopted in the cellular network which divides all the subcarriers in each cell into two groups: super and regular groups. The dynamic fractional frequency reuse scheme can guarantee the intra-cell orthogonality and reduce the inter-cell interference. The resource allocation of the dynamic fractional frequency reuse OFDMA cellular networks on downlink transmission can be divided into two parts: frequency partition and subcarrier allocation. First, each subcarrier is assigned to either the super group or the regular group based on the utility variables and the assignment should be reused in all cells. Second, we allocate the subcarrier to users by utilizing the designed functions. The simulation results show that the proposed scheme provides a higher system throughput and improves outage compared with existing schemes.
關鍵字(中) ★ 正交分頻多重接取系統
★ 資源配置
★ 部分頻率重複使用
關鍵字(英) ★ OFDMA
★ Fractional Frequency Reused
★ Resource Allocation
論文目次 論文摘要 -i-
Abstract -ii-
Contents -iv-
List of Figures -vi-
List of Tables -vii-
Chapter1. Introduction - 1 -
1.1. OFDM System - 1 -
1.2. OFDMA System - 2 -
1.3. Cellular System - 4 -
1.3.1. Frequency Reused System - 4 -
1.3.2. Cellular System with full frequency reuse - 4 -
1.4. Review of Literature - 7 -
1.5. Organization - 10 -
Chapter2. System Model and Problem Formulation- 11 -
2.1. FFR OFDMA System Model - 11 -
2.2. Problem Formulation - 15 -
Chapter3. Resource Allocation Schemes - 16 -
3.1. Proposed Resource Allocation Scheme - 18 -
3.2. The designed function of subcarrier allocation- 24 -
3.2.1. PFOSA Problem - 24 -
3.2.2. SROSA Problem - 26 -
3.3. Rate Maximization (RM) [18] - 28 -
3.4. Dynamic Subcarrier Assignment (DSA) [14]- 29 -
3.5. Comparison of Resource Allocation Schemes- 30 -
Chapter4. Simulation Results - 32 -
4.1. Simulation model - 32 -
4.2. Simulation Results - 33 -
Chapter5. Conclusions - 39 -
Reference - 40 -
Appendix A - 43 -
Appendix B - 48 -
參考文獻 [1] “IEEE standard for local and metropolitan area networks part 16: air interface for fixed and mobile broadband wireless access systems,” IEEE, Tech. Rep. 802.16, Oct. 2004.
[2] “IEEE standard for local and metropolitan area networks part 16 and amendment 2,” IEEE, Tech. Rep. 802.16e, Feb. 2006.
[3] “Evolved universal terrestrial radio access (E-UTRA); physical channels and modulation, (release 8), ” 3GPP, Tech. Rep. TS 36.211, Mar. 2008.
[4] S. Haykin, Communication systems, New York: John Wiley & Sons, Inc., 4th Edition, 2001.
[5] Luke T. H .Lee, C. J. Chang, Y. S. Chen, and S. Shen, “A utility-approached radio resource allocation algorithm for downlink in OFDMA cellular systems,” IEEE Vehicular Tech. Conf., vol. 3, pp. 1798-1802, May 2005.
[6] J. Cai, X. Shen, and J. W. Mark, “Downlink resource management for packet transmission in OFDM wireless communication Systems,” IEEE Trans. Wireless Commun., vol. 4, no. 4, July 2005.
[7] T. S. Rappaport, Wireless communications: principles and practice, New Jersey: Prentice Hall, 1999.
[8] R. Berezdivin, R. Breinig, and R. Topp, “Next-generation wireless communications concepts and technologies,” IEEE Commun. Mag., vol. 40, pp. 108-116, Mar. 2002.
[9] G. Foschini, H. Huang, S. Mullender, S. Venkatesan, and H. Viswanathan, “Physical-layer design for next-generation cellular wireless systems, ” Bell Labs Tech. J., vol. 10, no. 2, pp. 157-172, Aug. 2005.
[10] H. P. Lei, L. Zhang, and D. C. Yang, “A novel multi-cell OFDMA system structure using fractional frequency reuse, ” in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp. 1-5, Sept. 2007.
[11] M. Assaad, “Optimal fractional frequency reuse (FFR) in multicellular OFDMA system, ” IEEE Vehicular Tech. Conf., pp. 1-5, Sept. 2008.
[12] N. U. Hassan and M. Assaad, “Optimal fractional frequency reuse (FFR) and resource allocation in multiuser OFDMA system. ” IEEE Int. Conf. on Inf. and Commun. Tech., pp. 88-92, Aug. 2009.
[13] Z. Xu, G. Y. Li and C. Y. Yang, “Optimal threshold design for FFR schemes in multi-cell OFDMA networks, ” IEEE Int. Conf. on Commun., pp. 1-5, June 2011.
[14] S. H. Ali and V. C. M. Leung, “Dynamic frequency allocation in fractional frequency reused OFDMA networks,” IEEE Trans. Wireless Commun., vol. 8, no. 8, pp. 486-4295, Aug. 2009.
[15] NTT DoCoMo, Inc., “Proposals for LTE-Advanced Technologies,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-082575, June 2008.
[16] CATT, “Consideration on technologies for LTE-Advanced,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-082569, June 2008.
[17] L. Liu, G. Zhu, and D. Wu, “A Novel Fractional Frequency Reuse Structure based on Interference Avoidance Scheme in Multi-Cell LTE Networks,” IEEE Int. ICST Conf. on Commun. and Networking, pp. 551-555, Aug. 2011.
[18] J. Jang and K. B. Lee, “Transmit power adaptation for multiuser OFDM systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 2, pp. 171-178, Feb. 2003.
[19] C. Y. Wong, R. S. Cheng, K. B. Letaief, and R. D. Murch, “Multicarrier OFDM with adaptive subcarrier, bit, and power allocation,” IEEE J. Sel. Areas Commun., vol. 17, no. 10, pp. 1747-1758, Oct. 1999.
[20] I. C. Wong and B. L. Evans, “Adaptive downlink OFDMA resource allocation” in Proc. Asilomar Conf. Signals, Syst. and Comput., pp.2203-2207, Oct. 2008.
[21] W. Rhee and J. M. Cioffi, “Increase in capacity of multiuser OFDM system using dynamic subchannel allocation,” in Proc. IEEE Vehicular Tech. Conf., vol. 2, pp. 1085-1089, 2000.
[22] Y. J. Zhang and K. B. Letaief, “Multiuser Adaptive Subcarrier and bit allocation with adaptive cell selection for OFDM systems,” IEEE Trans. Wireless Commun., vol. 3, no.5, pp. 1566-1575, Sept.2004.
[23] S-E. Elayoubi, O. Ben Haddada, and B. Fourestie, “Performance evaluation of frequency planning schemes in OFDMA-based networks,” IEEE Trans. Wireless Commun., vol. 7, no. 5, pp. 1623-1633, May 2008.
[24] Y. W. Yu, E. Dutkiewicz, X. J. Huang, M. Mueck and G. F. Fang, “Performance analysis of soft frequency reuse for inter-cell interference coordination in LTE networks,” IEEE Int. Symp. on Commun. and Inf. Tech., pp. 504-509, Oct. 2010.
[25] A A. Darwish, A. S. Ibrahim, A. H. Badawi, and H. Elgebaly, “Performance improvement of fractional frequency reuse in WiMAX network,” IEEE Vehicular Tech. Conf., pp. 1-5, May 2011.
[26] Huawei, “Soft frequency reuse scheme for UTRAN LTE,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-050507, May 2005.
[27] Huawei, “Further analysis of frequency reuse scheme,” 3GPP TSG-RAN WG1 Contribution, Tech. Rep. R1-050841, Aug.2005.
[28] Z. Shen, J. G. Andrews, and B. L. Evans, “Adaptive resource allocation in multiuser OFDM systems with proportional rate constraints,” IEEE Trans. Wireless Commun., vol.4, no. 6, pp. 2726-2737, Nov. 2005.
[29] K. Kumaran and H. Viswanathan, “Joint power and bandwidth allocation in downlink transmission,” IEEE Trans. Wireless Commun., vol. 4, no. 3, pp. 1008-1016, May 2005
[30] R. B. Santos, F. R. M. Lima, W. C. Freitas, and F. R. P. Cavalcanti, “Qos based radio resurce allocation and scheduling with different user data rate requirements for OFDMA systems, ” in Proc. IEEE Int. Symp. on Personal, Indoor and Mobile Radio Commun., pp. 1-5, Sept. 2007.
[31] H. Kim and Y. Han, “A proportional fair scheduling for multicarrier transmission systems,” IEEE Commun. Letters, vol. 9, no.3, pp. 210-212, March 2005.
[32] N. Ruangchaijatupon and Y. JI, “Integrated approach to proportional-fair resource allocation for multiclass services in an OFDMA system,” IEEE Global Telecommun. Conf., pp. 1-6, Nov. 2009.
[33] K. Seong, M. Mohseni, and J. M. Cioffi, “Optimal resource allocation for OFDMA downlink systems,” in Proc. IEEE Int. Symp. on Inf. Theory, pp. 1394–1398, July 2006.
[34] W. Yu and J. M. Cioffi, “Constant power water-filling: Performance bound and low-complexity implementation,” IEEE Trans. Commun., vol. 54, no. 1, pp. 23–28, Jan. 2006.

指導教授 陳永芳(Yung-Fang Chen) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明