博碩士論文 995203012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:18.223.125.110
姓名 楊銘駿(Ming-Jun Yang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 感知無線電中以多階威能濾波器為基礎之頻譜偵測
(Multistage Wiener Filter Based Spectrum Sensing in Cognitive Radio)
相關論文
★ 利用手持式手機工具優化行動網路系統於特殊型活動環境★ 穿戴裝置動態軌跡曲線演算法設計
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 股票開盤價漲跌預測
★ 感知無線電異質網路下以不完美頻譜偵測進行資源配置之探討★ 大數量且有限天線之多輸入多輸出系統效能分析
★ 具有元學習分類權重轉移網路生成遮罩於少樣本圖像分割技術★ 具有注意力機制之隱式表示於影像重建 三維人體模型
★ 使用對抗式圖形神經網路之物件偵測張榮★ 基於弱監督式學習可變形模型之三維人臉重建
★ 以非監督式表徵分離學習之邊緣運算裝置低延遲樂曲中人聲轉換架構★ 基於序列至序列模型之 FMCW雷達估計人體姿勢
★ 基於多層次注意力機制之單目相機語意場景補全技術★ 應用於3GPP WCDMA-FDD上傳鏈路系統的遞迴最小平方波束合成犛耙式接收機
★ 調適性遠時程瑞雷衰退通道預測演算法設計與性能比較★ 智慧型天線之複合式到達方位-時間延遲估測演算法及Geo-location應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文提出在感知無線電中應用降維多階威能濾波器為基礎之固定假警報機率之頻譜偵測。頻譜偵測為感知無線電中極為重要之一環,於多重路徑衰減之環境下,次要使用者利用多天線技術提高對主要使用者訊號之偵測效能;次要使用者進行偵測決策前,廣義旁瓣對消器用以抑制干擾及雜訊之影響,爾後利用自適應匹配濾波器固定假警報機率偵測法進行決策;在短暫偵測時間所得有限取樣數之條件下,降維處理法可達減少計算複雜度及可靠效能之目的。如模擬結果所示,以降維多階威能濾波器為基礎之自適應匹配濾波器固定假警報機率偵測器,於有限取樣數下比滿秩濾波器為基礎之偵測器效能較佳。
摘要(英) In this thesis, a reduced-rank multistage Wiener filter based CFAR detector is applied for spectrum sensing in cognitive radio. Spectrum sensing is an essential component in cognitive radio. In order to enhance the performance of primary user signal detection under the multipath fading environments, a multiple antenna technique is employed at the secondary user. In addition, the general sidelode canceller (GSC) is utilized prior to the detection to suppress the effect of interference and noise. And then the AMF CFAR test is utilized for the secondary user. For the purpose of reduction of computational complexity and reliable performance, reduced-rank processing is a well-known technique under the condition of finite sample support in short sensing time. The numerical results show that the reduced-rank multistage Wiener filter based AMF CFAR detector outperforms the full rank filter-based detector in a finite number of samples.
關鍵字(中) ★ 感知無線電
★ 多階威能濾波器
★ 頻譜偵測
關鍵字(英) ★ multistage Wiener filter
★ spectrum sensing
★ cognitive radio
論文目次 Chapter1 Introduction 1
1.1 Cognitive Radio 1
1.2 Spectrum Sensing 2
1.3 Orthogonal Frequency Division Multiplexing 4
1.4 Minimum Variance Distortionless Response Beamforming 5
1.5 Generalized Sidelobe Canceller 8
1.6 Wiener Filter Decomposition 9
1.7 Organization 11
Chapter2 System Model and Problem Formulation 12
Chapter3 Proposed Algorithm 16
3.1 AMF CFAR Test 16
3.2 Reduced-rank Multistage Wiener Filter Based Detector 20
Chapter4 Simulation Results 26
Chapter5 Conclusion 29
Bibliography 30
參考文獻 [1]J. Mitola and G. Q. Maguire, “Cognitive radios: making software radios more personal,” IEEE Personal Commun., vol. 6, no. 4, pp. 13–18, Aug. 1999.
[2]S. Haykin, “Cognitive Radio: Brain-Emprowered Wireless Communications,” IEEE JSAC, vol. 23, no. 2, pp. 201–220, Feb. 2005.
[3]Y.-C. Liang, K.-C. Chen, G. Y. Li, and P. Mahonen, “Cognitive Radio Networking and Communications: An Overview,” IEEE Trans. on Vehic. Tech., vol. 60, no. 7, pp. 3386–3407, Sep. 2011.
[4]T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive radio applications,” IEEE Commun. Surveys Tuts., vol. 11, no. 1, pp. 116–130, First Quarter 2009.
[5]S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum sensing for cognitive radio,” Proc. IEEE, vol. 97, no. 5, pp. 849–877, May 2009.
[6]F. F. Digham, M. S. Alouini, and M. K. Simon, “On the Energy Detection of Unknown Signals Over Fading Channels,” IEEE Trans. Commun., vol.55, no.1, pp.21–24, Jan. 2007.
[7]A. Sonnenschein and P. M. Fishman, “Radiometric detection of spreadspectrum signals in noise of uncertain power,” IEEE Trans. Aerospace Electronic Systems, vol. 28, no. 3, pp. 654–660, Jul. 1992.
[8]R. Tandra and A. Sahai, “Fundamental limits on detection in low SNR under noise uncertainty,” in Proc. WirelessCom, vol.1, pp. 464- 469, 13–16 June 2005
[9]Y. H. Zeng and Y.-C. Liang, “Maximum-minimum eigenvalue detection for cognitive radio,” in Proc. IEEE Int. Symp. PIMRC, Athens, Greece, pp. 1–5, Sep. 2007.
[10]Y. Zeng and Y. C. Liang, “Eigenvalue-based spectrum sensing algorithms for cognitive radio,” IEEE Trans. Commun., vol. 57, no. 6, pp. 1784–1793, Jun. 2009.
[11]W. A. Gardner, “Exploitation of spectral redundancy in cyclostationary signals," IEEE Signal Processing Mag., vol. 8, pp. 14–36, Apr. 1991.
[12]D. Cabric, A. Tkachenko, and R. Brodersen, “Spectrum sensing measurements of pilot, energy, and collaborative detection,” in Proc. IEEE Military Commun. Conf., pp. 1–7, Oct. 2006.
[13]H. A. Mahmoud, T. Yucek, and H. Arslan, “OFDM for cognitive radio: Merits and challenges,” IEEE Wireless Commun. Mag., vol. 16, no. 2, pp. 6–15, Apr. 2009.
[14]S. Bokharaiee, Ha H. Nguyen, and Ed Shwedyk, “Blind Spectrum Sensing for OFDM-Based Cognitive Radio Systems,” IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 858–871, Mar. 2011.
[15]S. Chaudhari, V. Koivunen, and H. V. Poor, “Autocorrelation-Based Decentralized Sequential Detection of OFDM Signals in Cognitive Radios,” IEEE Trans. Signal Process., vol. 57, no. 7, pp. 2690–2700, Jul. 2009.
[16]A. Taherpour, M. Nasiri-Kenari, and S. Gazor, “Multiple antenna spectrum sensing in cognitive radios,” IEEE Trans. Wireless Commun., vol. 9, no. 2, pp. 814-823, Feb. 2010.
[17]P. Wang, J. Fang, N. Han, and H. Li, “Multiantenna-assisted spectrum sensing for cognitive radio,” IEEE Trans. Veh. Technol., vol. 59, no. 4, pp. 1791–1800, May 2010.
[18]L. Shen, H. Wang, W. Zhang, and Z. Zhao, “Multiple Antennas Assisted Blind Spectrum Sensing in Cognitive Radio Channels,” IEEE Commun. Lett., vol. 16, no. 1, pp. 92–94, Jan. 2012.
[19]V. Kuppusamy and R. Mahapatra, “Primary user detection in OFDM based MIMO cognitive radio,” in Proc. 3rd International Conf. Cognitive Radio Oriented Wireless Netw. Commun. (CrownCom 2008), pp. 1-5, May 2008.
[20]F. C. Robey, D. L. Fuhrman, E. J. Kelly, and R. Nitzberg, “A CFAR adaptive matched filter detector,” IEEE Trans. Aerosp. Electron Syst., vol. 29, no. 1, pp. 208–216, Jan. 1992.
[21]J. S. Goldstein and I. S. Reed, “Theory of partially adaptive radar,” IEEE Trans. Aerosp. Electron. Syst., vol. 33, no. 4, pp. 1309-1325, Oct. 1997.
[22]J. S. Goldstein, I. S. Reed, and P. A. Zulch, “Multistage partially adaptive STAP CFAR detection algorithm,” IEEE Trans. Aerosp. Electron. Syst., vol. 35, no. 2, pp. 645–661, Apr. 1999.
[23]J. S. Goldstein, I. S. Reed, P. A. Zulch, andW. L. Melvin, “A multistage STAP CFAR detection technique,” in Proc. IEEE Radar Conf., Dallas, TX, pp. 111–116, May 1998.
[24]J. S. Goldstein, I. S. Reed, and L. L. Scharf, “A multistage representation of the wiener filter based on orthogonal projections,” IEEE Trans. Inf. Theory, vol. 44, pp. 2943–2959, Nov. 1998.
[25]P. A. Zulch, J. S. Goldstein, J. R. Guerci, and I. S. Reed, “Comparison of reduced-rank signal processing techniques,” in Conf. Rec. 32nd Asilomar Conf. Signals, Syst., Comput., Monterey, CA, Oct. 1998.
[26]G. Dietl and W. Utschick, “On reduced-rank approaches to matrix Wiener filters in MIMO systems,” Proc. ISSPIT, Daarmstadt, Germany 2003.
[27]S. Werner, M. With, and V. Koivunen, “Householder multistage wiener filter for space-time navigation receivers”, IEEE Trans. Aerosp. Electron. Syst., vol.43, no.3, pp. 975–988, Jul. 2007.
[28]Y. F. Chen and C. S. Wang, “Adaptive antenna arrays for interference cancellation in OFDM communication systems with virtual carriers,” IEEE Trans. Veh. Technol., vol. 56, no. 4, pp. 1837–1844, Jul. 2007.
指導教授 陳永芳(Yung-Fang Chen) 審核日期 2012-7-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明