博碩士論文 995202099 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:68 、訪客IP:3.14.250.196
姓名 徐泰宇(Tai-yu Hsu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 類神經模糊系統應用於訊號處理之研究
(Study of Signal Processing Using Neural Fuzzy Systems)
相關論文
★ 無線行動隨意網路上穩定品質服務路由機制之研究★ 應用多重移動式代理人之網路管理系統
★ 應用移動式代理人之網路協同防衛系統★ 鏈路狀態資訊不確定下QoS路由之研究
★ 以訊務觀察法改善光突發交換技術之路徑建立效能★ 感測網路與競局理論應用於舒適性空調之研究
★ 以搜尋樹為基礎之無線感測網路繞徑演算法★ 基於無線感測網路之行動裝置輕型定位系統
★ 多媒體導覽玩具車★ 以Smart Floor為基礎之導覽玩具車
★ 行動社群網路服務管理系統-應用於發展遲緩兒家庭★ 具位置感知之穿戴式行動廣告系統
★ 調適性車載廣播★ 車載網路上具預警能力之車輛碰撞避免機制
★ 應用於無線車載網路上之合作式交通資訊傳播機制以改善車輛擁塞★ 智慧都市中應用車載網路以改善壅塞之調適性虛擬交通號誌
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 類神經模糊系統是由類神經網路與模糊理論所結合而成。類神經網路也稱為人工神經網路,主要模仿生物的神經系統,是一種平行計算系統,使用大量的人工神經元,來模仿生物神經網路的能力。目前視覺與聽覺方面表現最為出色的為生物機器,不管在圖像判別,或是語音辨識的能力,遠遠優秀電腦許多。而類神經網路主要就是利用生物神經網路的計算原理,來設計出一個功能強大的計算系統。
模糊理論主要是描述的模糊性乃是隸屬程度上的不確定性,藉由隸屬函數 (Membership Function) 來表達。現今模糊理論被廣泛的利用在各領域中,其主要原因是透過模糊理論所設計的模糊邏輯控制器,設計理念貼近人類的思維模式,它是利用語言變數(Linguistic Variable)來代表以往的經驗與專家的建議,模擬人類對控制機械的經驗或操作行為,然後經由模糊推論工場(Fuzzy Inference Machine)模仿人類下決策的方法,將這些條件式控制規則轉化成自動控制策略,以達到控制目標的一種控制器設計方法。
由於類神經網路優越的學習能力與判斷能力上,近年來被廣泛的應用在數位訊號處理上,在加上模糊理論對於未確定、部分未知的變化等,具有其推論效果。在本論文中,利用類神經網路針對多訊號源作數位訊號處理,再利用模糊理論,把其眾多結果利用模糊推論方式,推論出較合適的訊號可能性。本論文所判斷資料為自行產生訊號組合,利用常見的函數種類合成,例如:正弦波、餘弦波、方波、波物線等。本論文在最後呈現實驗結果,本機制在第一順位之預測結果,分別為 73.33%、83.33% 以及 83.33%。在前三順位之預測結果,分別高達90.00%、100.00% 以及 96.67%。證明在分類預測上,本論文之機制能夠提供更準確之預測。
摘要(英) The Neural Fuzzy System is a combination of Neural Network and Fuzzy Theory. Neural network is also known as artificial neural network. It mimics the biological nervous system. It is a parallel computing system. It uses a lot of artificial neurons to mimic the biological neural network. In the artificial intelligence field, Neural Networks have been applied successfully to speech recognition, image analysis and adaptive control. The Neural Network is using the calculation principles of biological Neural Networks to design a powerful computing system.
Fuzzy Theory is a form of many-valued logic or probabilistic logic. It deals with reasoning that is approximate rather than fixed and exact. The Fuzzy Theory devotes the main of the fuzzy membership degree of uncertainty. Fuzzy Theory is widely utilized in various fields. The main of reason is the fuzzy logic controller designed by Fuzzy Theory. The concept closes to the human mode of thinking. It is using linguistic variables to represent the past experience and the advice of experts. By Fuzzy Inference Machine, it mimics the human’s decision.
In this paper, it is using Neural Network to deal with multi-source. By Fuzzy Theory, the numbers of Neural Network’s results are to combine to form a new result. It judges the self-generated signal combination. It uses the common of types of functions, such as sine wave, cosine wave, and square wave. Finally, the simulation results show that the proposed can accurately predict on top 1 by 73.33%, 83.33% and 83.33%. It can accurately predict on top 3 by 90.00%, 100.00% and 96.67%. This proves the proposed mechanism can provide more accurate predictions.
關鍵字(中) ★ 模糊理論
★ 類神經網路
關鍵字(英) ★ Fuzzy Theory
★ Neural Networks
論文目次 目錄
第一章 緒論 1
1.1 概要 1
1.2 研究動機 2
1.3 研究目的 3
1.4 論文架構 4
第二章 背景知識與相關研究 5
2.1 類神經網路 5
2.2 模糊理論 20
2.3 比較 22
第三章 系統之設計 24
3.1 訊號源之產生及組合 24
3.2 系統架構 27
3.3 倒傳遞類神經網路 28
3.4 模糊理論 31
第四章 模擬結果與分析 35
4.1 實驗一:N = 25 之實驗結果 35
4.2 實驗二:N = 50 之實驗結果 45
4.3 實驗三:N = 75 之實驗結果 54
4.4 討論 63
第五章 結論 65
參考文獻 66
參考文獻 [1]. Bogdan M. Wilamowski, H. Yu, K. T. Chung, “Parity-N problems as a vehicle to compare efficiency of neural network architectures,” Industrial Electronics Handbook, vol. 5, pp. 10-1 - 10-8, CRC Press, 2010.
[2]. Bogdan M. Wilamowski, “How to not get frustrated with neural networks,” Proceedings of IEEE International Conference Industrial Technology (ICIT), pp. 5-11 - 14-16, Mar. 2011.
[3]. David Hunter, Bogdan M. Wilamowski, “Parallel multi-layer neural network architecture with improved efficiency,” Proceedings of 2011 4th Human System Interactions (HSI), pp.299-304, 19-21, May 2011.
[4]. Basu, A. “Small-Signal Neural Models and Their Applications,” IEEE Transactions on Biomedical Circuits and Systems, vol. 6, issue 1,pp. 64 – 65, Feb. 2012.
[5]. Bogdan M. Wilamowski, Hao Yu, “Improved computation for levenberg–marquardt training,” IEEE Transactions on Neural Networks, vol.21, no.6, pp.930-937, Jun. 2010.
[6]. Bogdan M. Wilamowski, H. Yu, N. Cotton, “Neuron by neuron algorithm,” Industrial Electronics Handbook, vol. 5 – INTELLIGENT SYSTEMS, 2nd Edition, chapter 13, pp. 13-1 to 13-24, CRC Press, 2010.
[7]. Bogdan M. Wilamowski, “Neural network architectures and learning algorithms,” IEEE Industrial Electronics Magazine, vol.3, no.4, pp.56-63, Dec. 2009.
[8]. Hao Yu, Bogdan M. Wilamowski, “Efficient and reliable training of neural networks,” Proceedings of Human System Interactions, pp.109-115, 21-23, May. 2009.
[9]. Devin Sabo, Yu. Xiao-Hua, “A new pruning algorithm for neural network dimension Analysis,” IEEE International Joint Conference on Neural Networks, Jun. 2008.
[10]. Razavi, S, B.A. Tolson, “A new formulation for feedforward neural networks,” Transactions on IEEE Neural Networks, vol.22, no.10, pp.1588-1598, Oct. 2011.
[11]. X. Yuan, Y. Wang, L. Wu, X. Zhang, and W. Sun, “Neural Network Based Self-Learning Control Strategy for Electronic Throttle Valve,” IEEE Transactions on Vehicular Technology, vol. 59, no. 8, Oct. 2010.
[12]. F. A.A., H. D., and P. P.Yu., “Recurrent-neural-network-based boolean factor analysis and its application to word clustering,” IEEE Transactions on Neural Networks, vol.20, no.7, pp.1073-1086, Jul. 2009.
[13]. T. Kondo, “Feedback GMDH-type neural network using prediction error criterion and its application to 3-dimensional medical image recognition,” Proceedings of SICE Annual Conference, pp.1050-1055, 20-22 Aug. 2008.
[14]. Hua-iren Y, ” Application of Neural Network on the Recognition of Acoustic Signal for Engine,” Department of Physics Nationl Sun Yat-sen University, 2003
[15]. Bhati. R, “A comparative analysis of different neural networks for face recognition using principal component analysis, wavelets and efficient variable learning rate,” International Conference on Computer and Communication Technology (ICCCT), pp. 526-531, Sep. 2010
[16]. Kabir, H, Ying Wang, Ming Yu, Qi-Jun Zhang, “High-dimensional neural-network technique and applications to microwave filter modeling,” IEEE Transactions on Microwave Theory and Techniques, vol.58, no.1, pp.145-156, Jan. 2010.
[17]. Li Xiaohu, Li Xiaoling, Zhang Jinhua, Zhang Yulin, Li Maolin, “A new multilayer feedforward small-world neural network with its performances on function approximation,” Proceedings of IEEE International Computer Science and Automation Engineering (CSAE), vol.3, pp.353-357, 10-12, Jun. 2011.
[18]. G. Wei-dong, M. Lu-yi, J. Zhong-kui, and N. Yang-cui, “Application of artificial neural network in forecasting water consumption of populus (P.×euramericana cv.“74/76”) seedlings,” 2010 International Conference on Computer Application and System Modeling (ICCASM), vol.5, pp.V5-585-V5-589, 22-24 Oct. 2010.
[19]. N. Yang-cui, Z. Xiao-xian, Z. Jing, and J. Gui-juan, “Forecasting the natural forest stand age based on artificial neural network model,” 2010 International Conference On Computer and Communication Technologies in Agriculture Engineering (CCTAE), vol.3, pp.536-539, 12-13 June 2010.
[20]. Fuzzy theory,http://faculty.ltu.edu.tw/includes/file_down.php?id=7331&uid= P092030/
[21]. J. Hua, “Application of fuzzy neural network in multi-maneuvering target tracking,” 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR), pp.92-95, 6-7 March 2010.
[22]. Z. Dinghui, C. Wenjun, L. Xin, W. Shaobin, and Y. Yunfei, “Research on RBF neural network for discrete fuzzy control,” International Conference on Computational Intelligence and Software Engineering, 2009. CiSE 2009., pp.1-4, 11-13 Dec. 2009.
[23]. W. Liyan, T. Jiafu, L. Qian, and Q. Deyu, “Fuzzy theory application in quality management,” Proceedings of Control and Decision Conference, 2009. CCDC ’’09. Chinese , pp.2925-2929, 17-19 Jun. 2009.
[24]. D.J Hemanth, C.K.S. Vijila, and J. Anitha, “Comparative analysis of neural model and fuzzy model for MR brain tumor image segmentation,” Proceedings of World Congress on Nature & Biologically Inspired Computing, pp.1616-1619, 9-11 Dec. 2009.
[25]. H. Gargama and S.K. Chaturvedi, “Criticality Assessment Models for Failure Mode Effects and Criticality Analysis Using Fuzzy Logic,” IEEE Transactions on Reliability, vol.60, no.1, pp.102-110, Mar. 2011.
[26]. M.Y Chen, M.H Fan and C.C Chen, “Forecasting Stock Price based on Fuzzy Time-Series with Equal-Frequency Partitioning and Fast Fourier Transform Algorithm,” Conference on Computing Communications and Applications, pp. 238 - 243, Jan. 2012.
[27]. Wikipedia,http://en.wikipedia.org/wiki/Fourier_transform/
[28]. Wikipedia,http://en.wikipedia.org/wiki/Correlation_and_dependence/
[29]. Neural network, http://tinyurl.com/3rdfq8v/
[30]. Donner Visiting, “Neural Fuzzy Systems”.
指導教授 周立德(Li-der Chou) 審核日期 2012-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明