博碩士論文 995201060 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.112.217
姓名 王珮暻(Pei-ching Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用可調式負載及面積縮放技巧提升功率放大器之效率
(Power Amplifier Efficiency Enhancement Using Tunable Load and Area Resizing Techniques)
相關論文
★ 分佈式類比相位偏移器之設計與製作★ 以可變電容與開關為基礎之可調式匹配網路應用於功率放大器效率之提升
★ 全通網路相位偏移器之設計與製作★ 應用於無線個人區域網路系統之低雜訊放大器設計與實現
★ 應用於極座標發射機之高效率波包放大器與功率放大器★ 數位家庭無線資料傳輸系統之壓控振盪器設計與實現
★ 鐵電可變電容之設計與製作★ 用於功率放大器效率提升之鐵電基可調式匹配網路
★ 基於全通網路之類比式及數位式相位偏移器★ 使用鐵電可變電容及PIN二極體之頻率可調天線
★ 具鐵電可變電容之積體被動元件製程及其應用於微波相位偏移器之製作★ 使用磁耦合全通網路之寬頻四位元 CMOS相位偏移器
★ 具矽基板貫孔之鐵電可變電容的製作與量測★ 矽基板貫孔的製作和量測
★ 使用鐵電可變電容之頻率可調微帶貼片天線★ 具矽基板貫孔之鐵電可變電容及矽化鉻薄膜電阻的製作與量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 功率放大器是射頻前端功率消耗最多的單一電路元件,因此提升其將直流功率轉換為射頻功率的效率對系統整體功耗的降低有長足影響。本論文將討論可調式負載及面積縮放這兩個效率改善技巧,並將之用於CMOS功率放大器設計實際驗證之。
我們設計了兩個操作於2.535 GHz使用可調式負載及面積縮收技巧的功率放大器,皆使用TSMC 0.18-μm CMOS製程實現。第一個放大器具有兩路面積切換及兩種負載阻抗切換;在3.3 V供應電壓下,此功率放大器之P1dB為23.1 dBm,相對應之PAE為31.2%。使用面積縮放及負載切換,在大於3-dB功率回退的情況下,直流功耗可降低40%以上。第二個放大器具有八路面積切換及兩種負載阻抗切換,並包含一適用於多路面積切換的旁路電容共用設計;在3.3 V供應電壓下,模擬之P1dB為21.2 dBm,相對應之PAE為30.6%;在3-dB功率回退的情況下,可使直流功耗降低40%。
我們成功地驗證結合面積縮放及可調式負載技巧可有效降低功率放大器於低功率區的直流功率消耗,並大幅提升其效率。
摘要(英) A power amplifier (PA) is the most power-hungry circuit block in a RF frontend. Increasing its efficiency of transferring the DC power to RF power is therefore eminent when it comes to reducing the DC power consumption of RF systems. This thesis discusses two efficiency-enhancing techniques, namely, tunable load and area resizing. The techniques are applied to and verified by two CMOS PA designs.
Based on tunable-load and area-resizing techniques, two switchable PAs operating at 2.535 GHz are designed and implemented in TSMC 0.18-μm CMOS technology. The first PA can be switched between two states; each state has a different transistor size and corresponds to a different load impedance. At 3.3-V supply voltage, the P1dB and the corresponding PAE are 23.1 dBm and 31.2%, respectively. By resizing the area and switching the load impedance, the DC power consumption of the PA can be reduced by more than 40% as the power is backed off by 3 dB or more. The second PA has 8 area-resizing states and its load impedance can be switched between two different values. In addition, it contains a bypass-capacitor-sharing design that suits area-resizing with multiple controls. Simulation results show, at 3.3-V supply, the P1dB and the corresponding PAE are 21.2 dBm and 30.6%, respectively. The DC power consumption is reduced by 40% at 3-dB power back-off.
It is successfully demonstrated that, combining area resizing and tunable load techniques, the DC power consumption of PAs at low-power region can be effectively reduced and the power efficiency can be significantly enhanced.
關鍵字(中) ★ 功率放大器
★ 可調式負載
關鍵字(英) ★ Power Amplifier
★ Tunable Load
論文目次 目錄
摘要 I
Abstract II
第一章 緒論 1
1–1研究動機 1
1–2文獻回顧 3
1–2–1 可調式匹配網路 5
1–2–2 面積縮放 6
1–3章節介紹 7
第二章 使用可切換式匹配及面積縮放技巧以提升效率之功率放大器 8
2–1簡介 8
2–2可切換式功率放大器設計 10
2–2–1 面積縮放技巧 12
2–2–2 可切換式匹配網路 14
2–2–3 可切換式電容 19
2–2–4 可切換式功率放大器 22
2–3電路模擬與量測結果 26
2–3–1 S參數量測結果與偵錯 26
2–3–2 FIB後S參數與大訊號模擬量測之結果 32
2–3–3 量測與偵錯結果比較 38
2–4 結果與討論 44
第三章 具多路面積切換功能之可切換式功率放大器 47
3–1簡介 47
3–2可切換式功率放大器 48
3–2–1面積縮放技巧 49
3–2–2可切換式匹配網路 53
3–2–3可切換式功率放大器 55
3–3模擬結果 60
3–4量測結果 67
3–4–1 佈局圖偵錯 67
3–4–2 FIB後S參數與大訊號模擬量測之結果 69
3–5結果與討論 74
第四章 結論 75
4–1結果與討論 75
4–2未來研究方向 76
參考文獻 77
參考文獻 [1] K. Yang, G. I. Haddad, and J. R. East, “High-efficiency class-A power amplifiers with a dual-bias-control scheme,” IEEE Transactions on Microwave Theory and Techniques, vol. 47, no. 8, pp. 1426–1432, August 1999.
[2] N. Wang, V. Yousefzadeh, D. Maksimović, S. Pajić, and Z. B. Popović, “60% efficient 10-GHz power amplifier with dynamic drain bias control,” IEEE Transactions on Microwave Theory and Techniques, vol. 52, no. 3, pp. 1077–1081, March 2004.
[3] B. Sahu and G.A. Rincon-Mora, “A high efficiency WCDMA RF power amplifier with adaptive, dual-mode buck-boost supply and bias-current control,” IEEE Microwave Wireless Component Letters, vol. 17, no. 3, pp. 238–240, March 2007.
[4] Y.-S. Jeon, J. Cha, and S. Nam, “High-efficiency power amplifier using novel dynamic bias switching,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 4, pp. 690–696, April 2007.
[5] F. Wang, A. H. Yang, D. F. Kimball, L. E. Larson, and P. M. Asbeck, “Design of wide-bandwidth envelope-tracking power amplifiers for OFDM applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 4, pp. 1244–1255, April 2005.
[6] D. F. Kimball, J. Jeong, C. Hsia, P. Draxler, S. Lanfranco, W. Nagy, K. Linthicum, L. E. Larson, and P. M. Asbeck, “High efficiency envelope tracking W-CDMA base-station amplifier using GaN HFETs,” IEEE Transactions on Microwave Theory and Techniques, vol. 54, no. 11, pp. 3848–3856, November 2006.
[7] K. Takahashi, S. Yamanouchi, T. Hirayama, and K. Kunihiro, “An envelope tracking power amplifier using an adaptive biased envelope amplifier for WCDMA handsets,” 2008 IEEE Radio Frequency Integrated Circuits Symposium, pp. 405 – 408, June 2008.
[8] M. Iwamoto, A.Williams, P.-F. Chen, A. G. Metzger, L. E. Larson, and P. M. Asbeck, “An extended Doherty amplifier with high efficiency over a wide power range,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 12, pp. 2472–2479, December 2001.
[9] Y. Yang, J. Cha, B. Shin, and B. Kim, “A fully matched N-way Doherty amplifier with optimized linearity,” IEEE Transactions on Microwave Theory and Techniques, vol. 51, no. 3, pp. 986–993, March 2003.
[10] J. Kang, D. Yu, K. Min, and B. Kim, “A ultra-high PAE Doherty amplifier based on 0.13-mm CMOS process,” IEEE Microwave and Wireless Component Letters, vol. 16, no. 9, pp. 505–507, September 2006.
[11] M. J. Pelk, W. C. E. Neo, J. R. Gajadharsing, R. S. Pengelly, and L. C. N. de Vreede, “A high-efficiency 100-W GaN three-way Doherty amplifier for base-station applications," IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 7, pp. 1582–1591, July 2008.
[12] Y.-S. Lee, M.-W. Lee, and Y.-H. Jeong, “Unequal-cells-based GaN HEMT Doherty amplifier with an extended efficiency range,” IEEE Microwave and Wireless Component Letters, vol. 18, no. 8, pp. 536–538, August 2008.
[13] G. Leuzzi and C. Micheli, “Variable-load constant efficiency power amplifier for mobile communication applications,” 33rd Proceeding of European Microwave Conference, pp. 375–377, October 2003.
[14] W. C. E. Neo, Y. Lin, X.-D. Liu, L. C. N. de Vreede, L. E. Larson, M. Spirito, M. J. Pelk, K. Buisman, A. Akhnoukh, A. de Graauw, and L. K. Nanver, “Adaptive multi-band multi-mode power amplifier using integrated varactor-based tunable matching networks,” IEEE Journal of Solid-State Circuits, vol. 41, no. 9, pp. 2166–2176, September 2006.
[15] V. Kaajakari, A. Alastalo, K. Jaakkola, and H. Seppä, “Variable antenna load for transmitter efficiency improvement,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1666–1672, August 2007.
[16] J.-S. Fu and A. Mortazawi, “A tunable matching network for power amplifier efficiency enhancement and distortion reduction,” 2008 IEEE MTT-S International Microwave Symposium Digest, pp. 1151–1154, June 2008.
[17] J.-S. Fu and A. Mortazawi, “Improving power amplifier efficiency and linearity using a dynamically controlled tunable matching network,” IEEE Transactions on Microwave Theory and Techniques, vol. 56, no. 12, pp. 3239–3244, December 2008.
[18] H. M. Nemati, C. Fager, U. Gustavsson, R. Jos, and H. Zirath, “Design of varactor-based tunable matching networks for dynamic load modulation of high power amplifiers,” IEEE Transactions on Microwave Theory and Techniques, vol. 57, no. 5, pp. 1110–1118, May 2009.
[19] H. T. Jeong, H. S. Lee, I. S. Chang, and C. D. Kim, “Efficiency enhancement method for high-power amplifiers using a dynamic load adaptation technique,” in 2005 IEEE MTT-S International Microwave Symposium Digest, pp. 2059–2062, June 2005.
[20] V. Kaajakari, A. Alastalo, K. Jaakkola, and H. Seppä, “Variable antenna load for transmitter efficiency improvement,” IEEE Transactions on Microwave Theory and Techniques, vol. 55, no. 8, pp. 1666-1672, August 2007.
[21] F. Carrara, C. D. Presti, and G. Palmisano, “A 2.4-GHz 24-dBm SOI CMOS power amplifier with on-chip tunable matching network for enhanced efficiency in back-off,” Proceedings of ESSCIRC, pp. 176–179, September 2009.
[22] H. Kim, Y. Yoon, O. Lee, K. H. An, D. H. Lee, W. Kim, C.-H. Lee, and J. Laskar, “A fully integrated CMOS RF power amplifier with tunable matching network for GSM/EDGE dual-mode application,” 2010 IEEE MTT-S International Microwave Symposium Digest, pp. 800–803, May 2010.
[23] Y. Yoon, J. Kim, H. Kim, K. H. An, O. Lee, C.-H. Lee, and J. S. Kenney, “A dual-mode CMOS RF power amplifier with integrated tunable matching network,” IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 1, pp.77–88, Jan. 2012.
[24] J. Deng, P. S. Gudem, L. E. Larson, and P. M. Asbeck, “A high average-efficiency SiGe HBT power amplifier for WCDMA handset applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 2, pp. 529–537, February 2005.
[25] G. Liu, P. Haldi, T.-J. K. Liu, and A. M. Niknejad, “Fully integrated CMOS power amplifier with efficiency enhancement at power back-off,” IEEE Journal of Solid-State Circuits, vol. 43, no. 3, pp. 600–609, March 2008.
[26] K. H. An, D. H. Lee, O. Lee, H. Kim, J. Han, W. Kim, C.-H. Lee, H. Kim, and J. Laskar, “A 2.4 GHz fully integrated linear CMOS power amplifier with discrete power control,” IEEE Microwave and Wireless Component Letters, vol. 19, no. 7, pp. 479–481, July 2009.
[27] J. Kim, Y. Yoon, H. Kim, K. H. An, W. Kim, H.-W. Kim, C.-H. Lee, and K.T. Kornegay, “A linear multi-mode CMOS power amplifier with discrete resizing and concurrent power combining structure,” IEEE Journal of Solid-State Circuits, vol. 46, no. 5, pp. 1034–1048, May 2011.
[28] P. Cruise, C.-M. Hung, R. B. Staszewski, O. Eliezer, S. Rezeq, K. Maggio, and D. Leipold, “A digital-to-RF-amplitude converter for GSM/GPRS/EDGE in 90-nm digital CMOS,” 2005 IEEE Radio Frequency integrated Circuits (RFIC) Symposium, pp. 21–24, June 2005.
[29] C. D. Presti, F. Carrara, A. Scuderi, P.M. Asbeck, and G. Palmisano, “A 25 dBm digitally modulated CMOS power amplifier for WCDMA/EDGE/OFDM with adaptive digital predistortion and efficient power control,” IEEE Journal of Solid-State Circuits, vol. 44, no. 7, pp. 1883–1896, July 2009.
[30] F. H. Raab, B. E. Sigmon, R. G. Myers, and R. M. Jackson, “L-band transmitter using Kahn EER technique,” IEEE Transactions on Microwave Theory and Techniques, vol. 46, no. 12, pp. 2220–2225, December 1998.
[31] D. Su and W. J. McFarland, “An IC for linearizing RF power amplifiers using envelope elimination and restoration,” IEEE Journal of Solid-State Circuits, vol. 33, no. 12, pp. 2252–2258, December 1998.
[32] D. Cox, “Linear amplification with nonlinear components,” IEEE Transactions on Communications, vol. 22, no. 12, pp. 1942–1945, December 1974.
[33] F. H. Raab, “Efficiency of outphasing RF power-amplifier systems,” IEEE Transactions on Communications, vol. 33, no. 10, pp. 1094–1099, October 1985.
[34] B. Stengel and W. R. Eisenstadt, “LINC power amplifier combiner method efficiency optimization,” IEEE Transactions on Vehicular Technology, vol. 49, no. 1, pp. 229–234, January 2000.
[35] I. Hakala, D. K. Choi, L. Gharavi, N. Kajakine, J. Koskela, and R. Kaunisto “A 2.14-GHz Chireix outphasing transmitter,” IEEE Transactions on Microwave Theory and Techniques, vol. 53, no. 6, pp. 2129–2138, June 2005.
[36] S. Moloudi, K. Takinami, M. Youssef, M. Mikhemar, and A. Abidi, “An outphasing power amplifier for a software-defined radio transmitter,” 2008 IEEE International Solid-State Circuits Conference Digest, pp. 568, 569, and 636, February 2008.
[37] T. Sowlati, D. Rozenblit, R. Pullela, M. Damgaard, E. McCarthy, D. Koh, D. Ripley, F. Balteanu, and I. Gheorghe, “Quad-band GSM/GPRS/EDGE polar loop transmitter,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2179–2189, December 2004.
[38] M. R. Elliott, T. Montalvo, B. P. Jeffries, F. Murden, J. Strange, A. Hill, S. Nandipaku, and J. Harrebek, “A polar modulator transmitter for GSM/EDGE,” IEEE Journal of Solid-State Circuits, vol. 39, no. 12, pp. 2190–2199, December 2004.
[39] R. B. Staszewski, J. L. Wallberg, S. Rezeq, C.-M. Hung, O. E. Eliezer, S. K. Vemulapalli, C. Fernando, K. Maggio, R. Staszewski, N. Barton, M.-C. Lee, P. Cruise, M. Entezari, K. Muhammad, and D. Leipold, “All-digital PLL and transmitter for mobile phones,” IEEE Journal of Solid-State Circuits, vol. 40, no. 12, pp. 2469–2482, December 2005.
[40] A. W. Hietala, “A quad-band 8PSK/GMSK polar transceiver,” IEEE Journal of Solid-State Circuits, vol. 41, no. 5, pp. 1133–1141, May 2006.
[41] A. Mazzanti, L. Larcher, R. Brama, F. Svelto, “Analysis of reliability and power efficiency in cascode class-E PAs” IEEE Journal of Solid-State Circuits, vol.41, no.5, pp. 1222- 1229, May 2006
[42] Y. Yoon, H. Kim, Y. Park, M. Ahn, C.-H. Lee, and J. Laskar, “A high-power and highly linear CMOS switched capacitor,” IEEE Microwave and Wireless Components Letters, vol. 20, pp. 619-621, November 2010
[43] Y.-C. Lee, “Varactor-based and switch-based tunable matching networks for power amplifier efficiency enhancement,” Master dissertation, National Central University, 2011.
指導教授 傅家相(Jia-Shiang Fu) 審核日期 2012-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明