博碩士論文 995201017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:18.117.186.153
姓名 林哲緯(Che-wei Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 超高速(>1Gb/s)可見光發光二極體應用於塑膠光纖通訊及內部載子動力學的研究
(Very high speed (>1Gb/s) visible LED applied for Plastic Optical Fiber communication and investigation of the internal carrier dynamic)
相關論文
★ 氮化鎵串接式綠光發光二極體在超高溫(200 ℃)操作的高速表現之和其內部之載子動力學★ 32Gbit/s 低耗能 850nm InAlGaAs 應變量子井面射型雷射
★ 具有大面積且在高靈敏度、低暗電流操作下具有頻寬增強效應的10 Gbit/sec平面式 InAlAs 累增崩潰光二極體★ 應用串接式技術達到超高飽和電流-頻寬乘積(7500mA-GHz,75mA,100GHz)的近彈道傳輸光偵測器
★ 利用鋅擴散方式在半絕緣(GaAs)基板上製作可室溫操作、高速且低漏電流的InAs光檢測器★ 應用超寬頻光子傳送混波器達到遠距分佈及調變的20Gbit/s無誤碼無線振幅偏移調變資料傳輸於W-頻帶
★ 具有同時高速資料傳輸及產生直流電功率的 砷化鎵/磷化銦鎵的雷射功率轉換器★ 具有超低耗能,傳輸資料量比值在850nm波段超高速(40 Gb/s)面射型雷射
★ 超高速(~300GHz)光偵測器的製造與其在毫米波生物晶片上的應用★ 超高速覆晶式(>300GHz)高功率(~mW)光偵測器製作與量測
★ 具有單空間模態,低發散角,高功率的鋅擴散二維850nm面射型雷射陣列★ 應用於850到1550 nm波長光連結且 具有高速,高效率和大面積的p-i-n光偵測器
★ 應用於中距離(2km)至短距離光連結知單模態、高速、高輸出光功率的850nm波段面射型雷射★ 應用在光連接具有高可靠度高速(>25Gbit/sec) 850光波段的垂直共振腔雷射
★ 具有高可靠度/高功率輸出與直流到次兆赫茲 (≧300GHz)操作頻寬的超高速光偵測器和其覆晶式封裝設計與分析★ 以磷化銦為基材,應用於850nm波段且具有高速(>25Gbit/sec),高效率大主動區孔徑的pin光檢測器之設計和分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本篇論文分為兩大主題,主題一是高速發光二極體應用於塑膠光纖通訊;主題二為紅光發光二極體內部載子動力學的研究。我們展示了新的藍綠光發光二極體其中心波長為500nm,使用圖案化藍寶石為基板作為塑膠光纖通訊的光源。為了增加外部量子效率和輸出功率於此極小尺寸的高速發光二極體,我們採用了圖案化藍寶石為基板。此外,藉由減少主動層InxGa1-xN/GaN量子井的數量和縮小元件發光區域,我們可以得到極高速的電光轉換頻寬(可高達400MHz)於所有高速可見光發光二極體中,並只需一個非常小的直流偏壓電流(40mA)。藉由金屬封裝transistor out-line can (TO-can)整合一個直徑500?m透鏡,會有~4dBm功率的提升從晶片到塑膠光纖,量到的功率高達-2.67dBm在40mA偏壓電流下。超高速無誤的資料傳輸速度(1.07Gbps)在50公尺塑膠光纖已成功的被展示。此外,利用向前錯誤更正(FEC)技術後,已經可於低電流40mA下達到。
此外,為了研究紅光發光二極體(AlGaP-based)的內部載子動力學,我們開發了新穎的Electrical-Optical pump-probe方法。透過直接注入短脈衝電信號激發,此方法可以直觀地得到樣本的光響應波形,以分析其原始的載子動力學。以此方法分析我們的新元件,量測結果顯示,光響應的波形在不同的偏壓電流下是不變的,溫度從室溫到100度。此結果與大多數AlGaP-based紅光LED的研究結果是相反的。由此我們確認了所觀測到的高電流下效率衰退(efficiency droop)現象的主要原因並不是由熱效應引發載子溢出,而是在低偏壓電流下歸因於缺陷的再復合;在高偏壓電流下歸因於缺陷的飽和與自發性複合機制。
摘要(英) We demonstrate the performance of a novel cyan light-emitting diode (LED) on a patterned sapphire (PS) substrate as a light source for plastic optical fiber (POF) communications with the central wavelength at 500 nm. To further enhance the external quantum efficiency (EQE) and output power of this miniaturized high-speed LED, an LED with a PS substrate is adopted. Furthermore, by greatly reducing the number of active InxGa1-xN/GaN multiple quantum wells (MQWs) to three and minimizing the device active area, we can achieve a record high electrical-to-optical (E-O) bandwidth (as high as 400 MHz) among all the reported high-speed visible LEDs under a very-small DC bias current (40 mA). By use of the transistor out-line can (TO-can) package integrated with a lens (500 ?m diameter), a ~4 dB enhancement in coupled optical power from chip to POF and a measured power as high as -2.67 dBm under 40 mA bias current can be achieved.Very-high error-free 1.07 Gbps data transmission over a 50 m POF fiber has been successfully demonstrated using this device under a bias current of 40 mA with forward error correction (FEC) technique
The mechanism responsible for the efficiency droop in AlGaInP-based vertically structured red light-emitting diodes (LEDs) is investigated using dynamic measurement techniques.
Short electrical pulses ( 100 ps) are pumped into this device and the output optical pulses probed using high-speed photoreceiver circuits. From this, the internal carrier dynamic inside the device can be investigated by use of the measured electrical-to-optical (E-O) impulse responses. Results show that the E-O responses measured under different bias currents are all invariant from room temperature to 100 C. This is contrary to most results reported for AlGaInP-based red LEDs, which usually exhibit a shortening in the response time and degradation in output power with the increase of ambient temperature. According to the
extracted fall-time constants of the E-O impulse responses, the origin of the efficiency droop in our vertical LED structure, which has good heat-sinking, is not due to thermally induced carrier leakage, but rather should be attributed to defect recombination and the saturation of defect/spontaneous recombination processes under low and high bias current, respectively.
關鍵字(中) ★ 塑膠光纖通訊
★ 發光二極體
★ 內部載子動力學
關鍵字(英) ★ internal carrier dynamic
★ plastic optical fiber
★ light emitting diode
論文目次 目錄
摘要 i
Abstract ii
目錄 v
圖表目錄 vii
第一章 導論 1
§1-1 發光二極體之介……………………………………………………….. 1
§1-2塑膠光纖發展趨勢與其應用………………………………………… 3
§1-3高速藍綠光發光二極體…………………………………………… 12
§1-4具有圖案化藍寶石為基板高速藍綠光發光二極體……...… 13
§1-5研究動機和論文架構 ……………………………………………….14
第二章 藍綠光氮化鎵發光二極體之分析 16
§2-1 氮化鎵發光二極體電流壅塞效應 16
§2-2 發光二極體調制速度之限制 19
§2-3 高速藍綠光氮化鎵發光二極體 20
第三章 高速氮化鎵發光二極體元件結構及製程 22
§3-1高速藍綠光氮化鎵發光二極體元件結構 22
§3-2高速藍綠光氮化鎵發光二極體製作結果與流程 24
第四章 高速氮化鎵發光二極體量測結果與討論 31
§4-1高速氮化鎵發光二極體之光特性量測 31
§4-2高速氮化鎵發光二極體之變溫特性量測 32
§4-3高速氮化鎵發光二極體調變速度之量測 32
§4-4高速氮化鎵發光二極體之封裝特性量測................................... 36
§4-5高速氮化鎵發光二極體之眼圖特性量測 .38
第五章 紅光發光二極體內部載子動力學研究 40
§5-1紅光發光二極體之內部載子動力學 40
§5-2紅光發光二極體之內部載子動力學量測 42
第六章 結論 48
參考文獻…………………………………………………………… 49
參考文獻 參考文獻
[1] M. M. Dumitrescu, M. J. Saarinen, M. D. Guina, and M. V. Pessa, “High-Speed Resonant Cavity Light-Emitting Diodes at 650 nm,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 8, No. 2, pp. 219-230, March/April, 2002.
[2] J. D. Lambkin, B. McGarvey, M. O’Gorman and T. Moriarty, “RCLEDs for MOST and IDB 1394 Automotive Applications,” Proceedings of the 14th International Conference on Polymer Optical Fiber, Hong Kong, 2005.
[3] R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. of SPIE, vol. 6013, pp.60130F, SPIE, Bellingham, WA, 2005.
[4] J. D. Lambkin, “Resonant Cavity Light Emitting Diodes: An Enabling Technology for Plastic Fibre Communication Applications,” Proc. International Conference on Plastic Optical Fiber 2010, Japan, Yokohama, Oct., 2010.
[5] P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81 fJ/bit energy-to-data ratio of 850 nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett., vol. 98, no. 23, p. 231106, Jun. 2011.
[6] J.-W. Shi, W.-C. Weng, F.-M. Kuo, Ying-Jay Yang, S. Pinches, M. Geen, A. Joel, “High-Performance Zn-Diffusion 850-nm Vertical-Cavity Surface-Emitting Lasers With Strained InAlGaAs Multiple Quantum Wells,” IEEE Photonics Journal, vol. 2, no. 6, pp. 960-966, Dec., 2010.
[7] C. L. Schow, F. E. Doany, C. Tsang, N. Ruiz, D. Kuchta, C. Patel, R. Horton, J. Knickerbocker, and J. Kash, “300-Gb/s, 24-Channel Full-Duplex, 850-nm CMOS-Based Optical Transceivers,” Proc. OFC 2008, San Diego, CA, USA, Feb., 2008, pp. OMK5.
[8] K. Kurata, “High-Speed Optical Transceiver and Systems for Optical Interconnects,” Proc. OFC 2010, San Diego, CA, USA, March, 2010, pp. OThS3.
[9] B. Luecke, “Plastic optical fiber steps out of the niche,” Laser Focus World, pp. 91-95, April, 2008.
[10] M. Akhter, P. Maaskant, B. Roycroft, B. Corbett, P. de Mierry, B. Beaumont and K. Panzer, “200Mbit/s data transmission through 100m of plastic fiber with nitride LEDs,” Electron. Lett., vol. 38, pp.1457-1458, Nov., 2002.
[11] J.-W. Shi, H.-Y. Huang, J.-K. Sheu, C.-H. Chen, Y.-S. Wu, and W.-C. Lai, “The improvement in Modulation Speed of GaN-Based Light-Emitting Diode (LED) by Use of n-Type Barrier Doping for Plastic Optical Fiber (POF) Communication” IEEE Photon. Technol. Lett., vol. 18, pp. 1636-1638, Aug., 2006.
[12] J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-Speed GaN-based Green Light Emitting Diodes with Partially n-doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett., vol. 29, pp. 158-160, Feb., 2008.
[13] Shih-Yung Huang, Ray-Hua Horng, Jin-Wei Shi, Hao-Chung Kuo, and Dong-Sing Wuu "High-Performance InGaN-Based Green Resonant-Cavity Light-Emitting Diodes for Plastic Optical Fiber Applications," IEEE/OSA Journal of Lightwave Technology, vol. 27, pp. 4084-4089, Sep., 2009.
[14] J.-W. Shi, H.-W. Huang, F.-M. Kuo, J.-K. Sheu, W.-C. Lai, M. L. Lee, “Very-High Temperature (200℃) and High-Speed Operation of Cascade GaN Based Green Light Emitting Diodes with an InGaN Insertion Layer,” IEEE Photon. Technol. Lett., vol. 22, pp. 1033-1035, July, 2010.
[15] J.-W. Shi, Che-Wei Lin, Wei Chen, J. E. Bowers, J.-K. Sheu, Ching-Liang Lin, Yun-Li Li, Juri Vinogradov, and Olaf Ziemann, “Very High-Speed GaN-Based Cyan Light Emitting Diode on Patterned Sapphire Substrate for 1 Gbps Plastic Optical Fiber Communication,” Proc. OFC 2012, Los Angele, CA, USA, March, 2012, pp. JTh2A.18.
[16] J. J. D. McKendry, R. P. Greeen, A. E. Kelly, Z. Gong, B. Guilhabert, D. Massoubre, E. Gu, and M. D. Dawson, “High-Speed Visible Light Communications Using Individual Pixels in a Micro Light-Emitting Diode Array,” IEEE Photon. Technol. Lett., vol. 22, pp. 1346-1348, Sep., 2010.
[17] T. Komine, M. Nakagawa, “Fundamental Analysis for Visible-Light Communication System using LED Lights,” IEEE Trans. on Consumer Electronics, vol. 50, pp. 100-107, Feb., 2004.
[18] J. Vucic, C. Kottke, S. Nerreter, A. Buttner, K.-D. Langer, and J. W. Walewski, “White Light Wireless Transmission at 200+ Mb/s Net Data Rate by Use of Discrete-Mulitone Modulation,” IEEE Photon. Technol. Lett., vol. 21, pp. 1511-1513, Oct., 2009.
[19] J.-W. Shi, C.-C. Chen, C.-K. Wang, C.-S. Lin, J.-K. Sheu, W.-C. Lai, C.-H. Kuo, C.-J. Tun, T.-H. Yang, F.-C. Tsao, and J.-I. Chyi “Phosphor-Free GaN-Based Transverse Junction White Light-Emitting Diodes with Re-grown n-type Regions” IEEE Photon. Technol. Lett., vol. 20, pp. 449-451, March, 2008.
[20] R. Kruglov, J. Vinogradov, O. Ziemann, S. Loquai, J. Muller, U. Strau?, and C.-A. Bunge, “Eye-Safe Data Transmission of 1.25 Gbit/s Over 100-m SI-POF Using Green Laser Diode,” IEEE Photon. Technol. Lett., vol. 24, pp. 167-169, Feb., 2012.
[21] S. Lutgen, A. Avramescu, T. Lermer, M. Schillgalies, D. Queren, J. Muller, D. Dini, A. Breidenassel, U. Strauss, “Progress of blue and green InGaN laser diodes,” Proc.SPIE, vol. 7616, p. 76160G, Jan. 2010.
[22] C. H. Jang, J. K. Sheu, S. J. Chang, M. L. Lee, C. C. Yang, S. J. Tu, F. W. Huang and C. K. Hsu, “Effect of growth pressure of undoped GaN layer on the ESD characteristics of GaN-based LEDs grown on patterned sapphire,” IEEE Photon. Technol. Lett., vol. 23, pp. 968-970, July, 2011.
[23] K. Ikeda, S. Horiuchi, T. Tanaka, and W. Susaki, “Design Parameters of Frequency Response of GaAs-(Ga,Al)As Double Heterostructure LED’s for optical Communications,” IEEE Trans. Electron Device, vol. ED-24, pp. 1001-1005, July, 1977.
[24] J.-W. Shi, H.-W. Huang, F.-M. Kuo, W.-C. Lai, M. L. Lee, and J.-K. Sheu, “Investigation of the Carrier Dynamic in GaN-Based Cascade Green Light-Emitting-Diodes Using the Very-Fast Electrical-Optical Pump-Probe Technique,” IEEE Trans. on Electron Device. vol. 58, pp. 495-500, Feb., 2011.
[25] J.-W. Shi, F.-M. Kuo, H.-W. Huang, J.-K. Sheu, C.-C. Yang, W.-C. Lai, M. L. Lee, “The Influence of a Piezoelectric Field on the Dynamic Performance of GaN-Based Green Light-Emitting-Diodes with a InGaN Insertion Layer,” IEEE Electron Device Lett., vol. 32, pp. 656-658, May, 2011.
[26] N. F. Gardner, G. O. Muller, Y. C. Shen, G. Chen, S. Wantanabe, W. Gotz, and M. R. Krames, “Blue-emitting InGaN-GaN double-heterostructure light-emitting diodes reaching maximum quantum efficiency above 200 A/cm2, ” Appl. Phys. Lett., vol. 91, pp. 243506, Dec., 2007.
[27] B. P. Smith and F. R. Kschischang, “Future Prospects for FEC in Fiber-Optic Communications,” IEEE J. of Sel. Topics in Quantum Electronics, vol. 16, pp. 1245-1257, Sep./Oct., 2010.
[28] M.-H.Kim,M.F.Schubert, Q. Dai, J. K. Kim,E.F. Schubert, J. Piprek, and Y. Park, “Origin of efficiency droop in GaN-based light-emitting
diodes,” Appl. Phys. Lett., vol. 91, p. 183507, Oct. 2007.
[29] A. David and M. J. Grundmann, “Droop in InGaN light-emitting diodes: A differential carrier lifetime analysis,” Appl. Phys. Lett., vol.
96, p. 103504, Mar. 2010.
[30] J.-W. Shi, H.-W. Huang, F.-M. Kuo, W.-C. Lai, M. L. Lee, and J.-K. Sheu, “Investigation of the carrier dynamic in GaN-based cascade green light-emitting-diodes using the very-fast electrical-optical pump-probe technique,” IEEE Trans. Electron Device, vol. 58, no. 2, pp. 495–500, Feb. 2011.
[31] T. Gessmann and E. F. Schubert, “High-efficiency AlGaInP light-emitting diodes for solid-state lighting applications,” J. Appl. Phys., vol. 95, pp. 2203–2216, Mar. 2004.
[32] L.-J.Yan, C.-C.Yang, M.-L. Lee, S.-J. Tu, C.-S. Chang, and J.-K. Sheu, “AlGaInP/GaP heterostructures bonded with Si substrate to serve as solar cells and light emitting diodes,” J. Electrochem. Soc., vol. 157, pp. H452–H454, Feb. 2010.
[33] M. Pessa, M. Guina, M. Dumitrescu, I. Hirvonen, M. Saarinen, L. Toikkanen, and N. Xiang, “Resonant cavity light emitting diode for a polymer optical fiber system,” Semicond. Sci. Technol., vol. 17, pp. R1–R9, May 2002.
[34] S. T. Yen and C.-P. Lee, “Effects of doping in the active region of630-nm band GaInP–AlGaInP tensile-strained quantum-well lasers,” IEEE J. Quantum Electron., vol. 34, no. 9, pp. 1644–1651, Sep. 1998.
[35] R. M. Fletcher, C. P. Kuo, T. D. Osentowski, K. H. Huang, and M. G. Craford, “The growth and properties of high performance AlGaInP emitters using a lattice mismatched GaP window layer,” J. Elec., Mater., vol. 20, no. 12, pp. 1125–1130, Dec. 1991.
[36] J.-W. Shi, S.-H. Guol, C.-S. Lin, J.-K. Sheu, K. H. Chang, W.-C. Lai, C.-H. Kuo, C.-J. Tun, and J.-I. Chyi, “The structure of GaN-based transverse junction blue light-emitting diode array for uniform distribution of injected current/carriers,” IEEE J. Sel. Topics Quantum Electron., vol. 15, no. 4, pp. 1292–1297, Jul./Aug. 2009.
指導教授 許晉瑋(Jin-wei Shi) 審核日期 2012-7-26
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明