博碩士論文 945401018 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:13.58.244.216
姓名 賴威廷(Wei-ting Lai)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 量子效應對矽與鍺奈米電晶體之電荷傳輸特性影響研究
(Quantum Effects on Charge Transport Properties of Si and Ge Nanostructured Transistors)
相關論文
★ 高效能矽鍺互補型電晶體之研製★ 高速低功率P型矽鍺金氧半電晶體之研究
★ 應變型矽鍺通道金氧半電晶體之研製★ 金屬矽化物薄膜與矽/矽鍺界面反應 之研究
★ 矽鍺異質源/汲極結構與pn二極體之研製★ 矽鍺/矽異質接面動態啓始電壓金氧半電晶體之研製
★ 應用於單電子電晶體之矽/鍺量子點研製★ 矽鍺/矽異質接面動態臨界電壓電晶體及矽鍺源/汲極結構之研製
★ 選擇性氧化複晶矽鍺形成鍺量子點的光特性與光二極體研製★ 選擇性氧化複晶矽鍺形成鍺量子點及其在金氧半浮點電容之應用
★ 鍺量子點共振穿隧二極體與電晶體之關鍵製程模組開發與元件特性★ 自對準矽奈米線金氧半場效電晶體之研製
★ 鍺浮點記憶體之研製★ 利用選擇性氧化單晶矽鍺形成鍺量子點之物性及電性分析
★ 具有自我對準電極鍺量子點單電洞電晶體之製作與物理特性研究★ 具有自我對準下閘電極鍺量子點單電洞電晶體之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主題在於製作及研究矽與鍺奈米結構 (奈米線和量子點) 及其相關電晶體元件。首先,藉由電子束微影搭配 C4F8/SF6 電漿蝕刻及熱氧化製程技術,設計製作了寬度由 7 至 60 奈米之一維矽奈米線。在矽奈米線金氧半場效電晶體中,實驗發現載子傳輸行為與通道大小及奈米線尺寸息息相關:在固定奈米線線寬為 24 奈米下,當通道長度 (Lg) 與電子波波長 (le) 滿足 mle/2 = Lg 關係式,如通道長度為 52 及 34 奈米,元件在臨限電壓附近呈現電流平台及震盪電流特性;反之,當通道長度為 42 奈米時,元件行為即如同傳統金氧半場效電晶體。再者,當奈米線線寬縮減至 10 奈米以下時,元件電流則呈現更加明顯之震盪行為。經由變溫量測分析,量子干涉及次能帶散射效應應為所觀察電流行為之來源機制。這實驗結果也顯示,當通道由三維平面結構縮減至零維量子點時,載子傳輸特性將會有本質上的改變。
在製作零維鍺量子點方面,由於鍺析出及鍺濃縮效應,高溫熱氧化絕緣層上單晶矽鍺合金結構,未氧化完的矽鍺合金之鍺含量會隨氧化時間漸變,並同時逐漸形成鍺量子點。直至所有矽緩衝層被氧化消耗,鍺原子甫全部析出並聚集形成鍺量子點。因此,熱氧化絕緣層上單晶矽鍺合金平面可形成小顆且緊密之鍺量子點;而氧化矽鍺合金奈米線可形成單一或是少數鍺量子點排列在完全氧化之奈米線中間,並且自我對準至兩旁未完全氧化之矽鍺/矽墊層區。
陰極激發光之波峰能量隨量子點尺寸縮小而藍移之現象說明,由於量子侷限效應,鍺量子點具有準直接能隙特性。同時,我們也實驗驗證了矽鍺量子點/矽奈米柱異質介面光偵測器。藉由矽鍺與矽在價電帶的偏移量,元件在照光下,具有高達 10^4 之光電流增益。再者,若將鍺量子點埋進複晶矽薄膜電晶體以形成鍺量子點光電晶體,初步的模擬結果說明,經由光波導進入元件之光電場會集中在鍺量子點彼此之間,進而增強鍺量子點之吸光效率及光響應。這說明鍺量子點在光纖通訊或光積體電路上有其發展潛力。另一方面,在包含鍺量子點之氮化矽光子晶體共振腔中,計算之 quality factor (Q) 可接近 10^5,提供了實現鍺量子點光源的可能性。
另一方面,藉由鍺量子點共振穿隧二極體以及單電子電晶體,我們探討了鍺量子點之電子能結構及電荷傳輸特性。在高摻雜矽/二氧化矽/鍺量子點/二氧化矽/高摻雜矽之共振穿隧二極體中,由於高摻雜矽電極之電子分布能帶不足以同時對應多個量子點能階,故可直接由量測之穿隧電流譜線解析鍺量子點內部之單粒子電子能結構。在適當的照光條件下,量子點內部多出的電洞,使我們經由實驗觀察到額外之光激發細微電流結構。同時,我們也藉由電壓脈衝激發來探討通過鍺量子點之暫態載子傳輸行為:於電壓改變瞬間出現之大幅震盪電流響應是源於鍺量子點內部之位移電流;而當元件逐漸回到穩定態後,則改由穿隧電流所主導。
本論文的最終目標在於實現具有自我對準電極之高效能鍺量子點單電洞電晶體。在有效抑制穿隧位能障隨閘極偏壓而降低之寄生效應下,元件於室溫具有明顯之庫倫阻斷震盪電流,而最大峰對谷電流比值高達 750。
摘要(英) In this thesis, fabrication and characterization of both Si and Ge nanostructures (nanowire (NW) and quantum dot (QD)) as well as the associated transistors were investigated. Si NWs of various width ranging from 7 to 60 nm were generated using a combination of electron-beam lithographic, C4F8/SF6 plasma etching, and thermal oxidation processes. For one-dimensional Si NW metal-oxide-semiconductor field-effect-transistors (MOSFETs), there appears to be strong channel and width size dependence on the carrier transport wherein. For a NW with a given wire width (W) of 24 nm, clear current plateau/oscillation features were observed around the threshold regime once the channel length (Lg) satisfied the relation of mle/2 = Lg, where le is the electron wavelength, for instance, Lg = 52 and 34 nm. Whereas the NWFETs behaved like a conventional MOSFET when Lg = 42 nm. On the other hand, as the wire width was reduced less than 10 nm, NWFETs exhibited much strong current oscillation behaviors. Temperature-dependent analysis suggests the interplay of quantum interference and intersubband scattering effects being the plausible mechanisms for the observed current behaviors. It also implies there should be dramatic different carrier transports properties when the channel is scaled from three-dimensional planar structures into zero-dimensional QDs.
As for the generation of Ge QDs, thanks to Ge segregation and condensation effects during high temperature thermal oxidation of SiGe/Si-on-insulator (SGOI) structures, Ge QDs are ultimately formed by a progressive concentration of the Ge content within the remaining unoxidized SiGe until the entire Si is used up. As a consequence, tiny and dense (size and density) Ge QDs were formed after thermal oxidation of SGOI planar structures, whereas a single or a few Ge QDs line up along the core of an oxidized SGOI NW which self-aligns with adjacent unconsumed SiGe/Si pads.
The blue shift of the cathodeluminescence (CL) peak energy with a reduction of the QD size revealed the quasi-direct bandgap properties of Ge QDs because of quantum confinement effects. SiGe-QD/Si-pillar heterostructured photodetectors were experimentally demonstrated. Thanks to the effective confinement of holes within the QD by the valence band offset between SiGe and Si, a current enhancement up to 10^4 was achieved under light illumination, suggesting potentials of Ge QDs for fiber-optical communications or optoelectronic applications. On the other hand, incorporating the Ge QDs into the gate stacks of poly-Si thin-film-transistors, preliminary simulation results pointed to a possible promising enhancement in the light absorption efficiency and photoresponsivity by the concentration of the electric field between adjacent Ge QDs. Meanwhile, the calculated quality factor (Q) up to almost 10^5 is obtained if Ge QDs are embedded in L-type Si3N4 photonic crystal cavities, giving an opportunity for the realization of Ge-QD light emitting devices.
The electronic structures of the Ge QDs and the charge transportation wherein were investigated in terms of Ge-QD resonant tunneling diodes (RTDs) and single-electron transistors (SETs). In a designed n+-Si/SiO2/Ge-QD/SiO2/n+-Si RTD, we are able to resolve the one-particle electronic structure of the Ge QD directly from the steady-state tunneling current spectroscopy for the sake that the electron bandwidth of n+-Si electrodes could not cover more than one energy levels of the Ge QD simultaneously. Additionally we observed a salient photogenerated fine structures under suitable light pumping owing to excess holes dwell in the QD. We gained the insight of the transient carrier transport through the Ge QD by applying different voltage trains to a Ge-QD RTD, and found out that the displacement current played a major role in the pulse transient region whereas the tunneling current dominated when the device reached to the steady state. The ultimate goal of this thesis is the experimental demonstration of high performance Ge-QD single-hole transistors with self-aligned gate and source/drain electrodes. As a result of effective suppression of gate-induced tunneling barrier lowing, clear Coulomb blockade oscillations with a large peak to valley current ratio up to 750 is achievable at room temperature.
關鍵字(中) ★ 鍺
★ 量子點
★ 單電子電晶體
★ 奈米線
★ 矽
關鍵字(英) ★ Single-elecron transistor
★ Ge
★ Si
★ Nanowire
★ Quantum dot
論文目次 摘要......i
Abstract......iii
致謝......v
Table of Contents......vi
List of Figures......ix
List of Tables......xv
Chapter 1 Introduction......1
1-1 Introduction......1
1-2 Physical Properties in Low Dimensional Nanowire and Nanodot Structures......4
1-2-1 Quantized density of states......4
1-2-2 Suppressed scattering effect......5
1-2-3 Ballistic transport and coherence phenomena......5
1-2-4 Enhanced excitonic effect and oscillator strength......5
1-3 Dissertation Organization......6
Chapter 2 Si Nanowire MOSFETs – Carrier transport in one-dimensional nanowire structure......11
2-1 Introduction......11
2-2 Device Structure and Fabrication Process......11
2-3 Current−Voltage Characteristics......12
2-4 Analysis for Carrier Transport Mechanisms......14
2-4-1 Random dopant fluctuation or randomly distributed defect states......14
2-4-2 Single-electron tunneling......15
2-4-3 Corner effects......15
2-4-4 Quantum wave interference......16
2-4-5 Intersubband scattering......17
2-5 Photoexcitation effects on carrier transport......19
2-6 Summary......19
Chapter 3 Ge QD Formation and Growth Mechanism......29
3-1 Introduction......29
3-2 Review of Thermal Oxidation of Si1-xGex Alloy......30
3-3 Ge QD Formation by Thermally Oxidizing SiGe-on-insulator “Plane”......32
3-4 Ge QD Formation by Thermally Oxidizing SiGe-on-insulator “Nanowire”......35
3-5 Summary......37
Chapter 4 Optical/Electronic Structures and Dynamic Transport Properties of Ge Quantum Dots......45
4-1 Introduction......45
4-2 Cathodoluminescence Spectra of Ge QDs......45
4-3 Steady-state Current Behaviors of A Ge-QD Resonant Tunneling Diode......47
4-4. Transient Current through A Single Ge Quantum Dot......48
4-5 Summary......52
Chapter 5 Ge-QD Single-Electron/Single-Hole Devices – Carrier transport in zero-dimensional QD structure......58
5-1 Introduction......58
5-2 Operating Principle of A Single-Electron Transistor......59
5-2-1. Output characteristics (Vds manipulation at a fixed Vg)......59
5-2-2. Transfer characteristics (Gate manipulation at a fixed Vds)......61
5-2-3. Three-dimensional I-V characteristics or contour plot (Id or Gd with respect to Vds and Vg)......61
5-3 Ge-Quantum Dot Single-Electron/Single-Hole Transistor (Ge-QD SET/SHT)......66
5-3-1. Ge-QD single-electron/single-hole transistors with a MOSFET-like structure......66
5-3-2. Planar Ge-QD single-electron/single-hole transistors......68
5-3-3. Ge-QD single-hole transistors with self-aligned electrodes......70
5-4 Summary......74
Chapter 6 Ge-Quantum Dot Optical Device......90
6-1 Introduction......90
6-2 Ge-QD Phototransistor Integrated with Si3N4 Waveguide......90
6-3 Ge-QD Light Emitting Device......92
6-4 SiGe QD on Si Pillar Photodetector......95
6-5 Summary......97
Chapter 7 Conclusion and Future Works......107
7-1 Conclusion......107
7-2 Future Works......108
References......110
Biography......121
Publication List......122
參考文獻 [1] J. Bardeen and W. H. Brattain, “The transistor, a semiconductor triode,” Phys. Rev., 71, 230 (1948).
[2] W. Shockley, “The theory of p-n junction in semiconductors and p-n junction transistors,” Bell Syst. Tech. J., 28, 435 (1949).
[3] S. M. Sze, Modern semiconductor device physics: Wiley (1998).
[4] W. Schottky, “Halbleitertheorie der sperrschicht,” Naturwissenschaften, 26, 843 (1938).
[5] W. Shockley, “A unipolar field-effect-transistor,” Proc. IRE, 40, 1365 (1952).
[6] J. E. Lilienfeld, “Method and apparatus for controlling electric currents,” U.S. Patent, 1745175 (1930).
[7] D. M. Chapin, C. S. Fuller, and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power,” J. Appl. Phys., 25, 676 (1954).
[8] L. Esaki, “New phenolmenon in narrow germanium p-n junctions,” Phys. Rev., 109, 603 (1958).
[9] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide surface device,” in IRE Dev. Res. Conf., Pittsburgh (1960).
[10] D. Kahng and S. M. Sze, “A floating gate and its application to memory devices,” Bell Syst. Tech. J., 46, 1283 (1967).
[11] G. E. Moore, “Cramming more components onto integrated circuits,” Electron. Mag., 38, 114 (1965).
[12] C. Hu, “SOI (Silicon-On-Insulator) for high speed ultra large scale integration,” Jpn. J. Appl. Phys., 33, 365 (1994)
[13] M. Terauchi, A. Yoshimi, Murakoshi, and Y. Ushiku, “Suppression of the floating-body effects in SOI MOSFETs by bandgap engineering,” in VLSI Sym. Dig. Tech. papers, 35 (1995).
[14] Y. K. Choi, K. Asano, N. Lindert, V. Subramanian, T. J. King, J. Bokor, and C. Hu, “Ultra-thin body SOI MOSFET for deep-sub-tenth micron era,” 1999 IEDM Tech. Dig. IEEE, 919 (1999).
[15] B. S. Doyle, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, A. Murthy, R. Rios, and R. Chau, “High performance fully-depleted tri-gate CMOS transistors,” IEEE Elec. Dev. Lett., 24, 263 (2003).
[16] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan, and C. M. Lieber, “Ge/Si nanowire heterostructures as high-performance field-effect transistors,” Nature, 441, 489, (2006).
[17] N. Singh, K. D. Buddharaju, S. K. Manhas; A. Agarwal; S. C. Rustagi; G. Q. Lo, N. Balasubramanian, and D. –L, Kwong, “Si, SiGe nanowire devices by top–down technology and their applications,” IEEE Trans. Elec. Dev., 55, 3107 (2008).
[18] J. P. Colinge, “Quantum-wire effects in trigate SOI MOSFETs,” Solid-St. Electron., 51, 1153 (2007).
[19] A. Hartstein, “Quantum interference in ultrashort channel length silicon metal-oxide-semiconductor field-effect transistors,” Appl. Phys. Lett., 59, 2028 (1991).
[20] Y. Omura, K. Kurihara, Y. Takahashi, T. Ishiyama, Y. Nakajima, and K. Izumi, “50-nm channel nMOSFET/SIMOX with an ultrathin 2- or 6-nm thick silicon layer and their significant features of operations,” IEEE Elec. Dev. Lett., 18, 190 (1997).
[21] G. Wirth, U. Hilleringmann, J. T. Horstmann, and K. Goser, “Mesoscopic transport phenomena in ultrashort channel MOSFETs,” Solid-St. Electron., 43, 1245 (1999).
[22] H. Ueno, M. Tanaka, K. Morikawa, T. Takahashi, M. Miura-Mattausch, and Y. Omura, “Origin of transconductance oscillations in silicon-on-insulator metal–oxide–semiconductor field-effect transistors with an ultrathin 6-nm-thick active Si layer,” J. Appl. Phys., 91, 5360 (2002).
[23] A. T. Tilke, F. C. Simmel, H. Lorenz, R. H. Blick, and J. P. Kotthaus, “Quantum interference in a one-dimensional silicon nanowire,” Phys. Rev. B, 68, 075311 (2003).
[24] F. Boeuf, X. Jehl, M. Sanquer, and T. Skotnicki, “Controlled single-electron effects in nonoverlapped ultra-short silicon field effect transistors,” IEEE Trans. Nanotech., 2, 144 (2003).
[25] J. P. Colinge, A. J. Quinn, L. Floyd, G. Redmond, J. C. Alderman, W. Xiong, C. R. Cleavelin, T. Schulz, K. Schruefer, G. Knoblinger, and P. Patruno, “Low-temperature electron mobility in trigate SOI MOSFETs,” IEEE Elec. Dev. Lett., 27, 120 (2006).
[26] J. P. Colinge, W. Xiong, C. R. Cleavelin, T. Schulz, K. Schrüfer, K. Matthews, and P. Patruno, “Room-temperature low-dimensional effects in pi-gate SOI MOSFETs,” IEEE Elec. Dev. Lett., 27, 775 (2006).
[27] S. C. Rustagi, N. Singh, Y. F. Lim, G. Zhang, S. Wang, G. Q. Lo, N. Balasubramanian, and D. –L, Kwong, “Low-temperature transport characteristics and quantum-confinement effects in gate-all-around Si-nanowire N-MOSFET,” IEEE Elec. Dev. Lett., 28, 909 (2007).
[28] D. V. Averin and K. K. Likharev, “Coulomb blockade of single-electron tunneling, and coherent oscillations in small tunnel junctions,” J. Low Temp. Phys., 62, 345 (1986).
[29] T. A. Fulton and G. J. Dolan, “Observation of single-electron charging effects in small tunnel junctions,” Phys. Rev. Lett., 59, 109 (1987).
[30] M. Saitoh, H. Harata, and T. Hiramoto, “Room-temperature demonstration of integrated silicon single-electron transistor circuits for current switching and analog pattern matching,” 2004 IEDM Tech. Dig. IEEE, 187 (2004).
[31] L. Zhuang, L. Guo, and S. Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room temperature,” Appl. Phys. Lett., 72, 1205 (1998).
[32] K. S. Park, S. J. Kim, I. B. Baek, W. H. Lee, J. S. Kang, Y. B. Jo, S. D. Lee, C. K. Lee, J. B. Choi, J. H. Kim, K. H. Park, W. J. Cho, M. G. Jang, and S. J. Lee, “SOI single-electron transistor with low RC delay for logic cells and SET/FET hybrid ICs,” IEEE Trans. Nanotech., 4, 242 (2005).
[33] D. Bimberg, M. Grundmann, and N. N. Ledentsov, Quantum dot heterostructures: Wiley (1999).
[34] M. F. Li, Modern semiconductor quantum physics: World Science (1994).
[35] H. Sakaki, “Scattering suppression and high-mobility effect of size-quantized electrons in ultrafine semiconductor wire structures,” Jpn. J. Appl. Phys., 19, L735 (1980).
[36] D. A. B. Miller, D. S. Chemla, D. J. Eilenberger, P. W. Smith, A. C. Gossard, and W. T. Tsang, “Large room‐temperature optical nonlinearity in GaAs/Ga1−x AlxAs multiple quantum well structures,” Appl. Phys. Lett., 41, 679 (1982).
[37] C. Weisbuch and B. Vinter, Quantum semiconductor structures: Academic Press Inc, San Diego (1991).
[38] Y. C. Yeo, V. Subramanian, L. Kedzierski, P. Xuan, T. J. King, J. Bokor , C. Hu, “Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel,” IEEE Elec. Dev. Lett., 21, 161 (2000) .
[39] P. W. Li and W. M. Liao, “Analysis of Si/SiGe channel pMOSFETs for deep-submicron scaling,” Solid-St. Electron., 46, 39 (2002).
[40] B. H. Lee, L. Kang, R. Nieh, W. J. Qi, and Jack. C. Lee, “Thermal stability and electrical characteristics of ultrathin hafnium oxide gate dielectric reoxidized with rapid thermal annealing,” Appl. Phys. Lett., 76, 1926 (2000).
[41] G. Ribes, J. Mitard, M. Denais, S. Bruyere, F. Monsieur, C. Parthasarathy, E. Vincent, and G. Ghibaudo, “Review on high-k dielectrics reliability issues,” IEEE. Trans. Dev. and Mater. reliability, 5 , 5 (2005).
[42] Q. Lu, Y. C. Yeo, P. Ranade, H. Takeuchi, T.-J. King, C. Hu, S. C. Song, H. F. Luan, and D. L. Kwong, “Dual-metal gate technology for deep-submicron CMOS transistors,” in VLSI Sym. Dig. Tech. papers, 72 (2000).
[43] B. Cheng, M. Cao, R. Rao, A. Inani, P. Vande Voorde, W. M. Greene, J. M. C. Stork, Z. P. Yu, P. M. Zeitzoff, and J. C. S. Woo, “The impact of high-κ gate dielectrics and metal gate electrodes on sub-100 nm MOSFETs ,” IEEE Trans. Elec. Dev., 76, 1537 (1999).
[44] R. Chau, S. Datta, M. Doczy, B. Doyle, J. Kavalieros, and M. Metz, “High–?/metal–gate stack and its MOSFET characteristics,” IEEE Elec. Dev. Lett., 25, 408 (2004).
[45] C. W. Lee, I. Ferain, A. Kranti, N. D. Akhavan, P. Razavi, R. Yan, R. Yu, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, S. Gheorghe, R. Murphy, and J. P. Colinge, “Short-channel junctionless nanowire transistors,” Solid-St. Dev. and Mater. Conf. (SSDM), 1044 (2010).
[46] J. P. Colinge, C. W. Lee, A. Afzalian, N. D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A. M. Kelleher, B. McCarthy, and R. Murphy, “Nanowire transistor without junctions,” Nature Nanotech., 5, 225 (2010).
[47] C. J. Adkins, S. Pollit, and M. Pepper, “The Anderson transition in silicon inversion layers,” J. Phys., 37, C4.343 (1976).
[48] W. Xue and P. A. Lee, “Two-dimensional resonant tunneling,” Phys. Rev. B, 38, 3913 (1988).
[49] W. J. Skocpol, P. M. Mankiewich, R. E. Howard, L. D. Javkel, D. M. Tennant, and A. D. Stone, “Universal conductance fluctuations in silicon inversion-layer nanostructures,” Phys. Rev. Lett., 56, 2865 (1986).
[50] R. A. Smith and H. Ahmed, “A silicon Coulomb blockade device with voltage gain,” Appl. Phys. Lett., 71, 3838 (1997).
[51] A. Tilke, R. H. Blick, H. Lorenz, J. P. Kotthaus, and D. A. Wharam, “Coulomb blockade in quasimetallic silicon-on-insulator nanowires,” Appl. Phys. Lett., 75, 3704 (1999).
[52] A. Tilke, R. H. Blick, H. Lorenz, and J. P. Kotthaus, “Single-electron tunneling in highly doped silicon nanowire in a dual-gate configuration,” J. Appl. Phys., 89, 8159 (2001).
[53] R. Augke, W. Eberhardt, C. Single, F. E. Prins, D. A. Wharam, and D. P. Kern, “Doped silicon single electron transistors with single island characteristics,” Appl. Phys. Lett., 76, 2065 (2000).
[54] T. Koester, F. Goldschmidtboeing, B. Hadam, J. Stein, S. Altmeyer, B. Spangenberg, H. Kurz, R. Neumann, K. Brunner,and G. Abstreiter, “Coulomb blockade effects in a highly doped silicon quantum wire fabricated on novel molecular beam epitaxy grown material,” Jpn. J. Appl. Phys., 38, 465 (1999).
[55] J. P. Colinge, J. W. Park, and W. Xiong, “Threshold voltage and subthreshold slope of multiple-gate SOI MOSFETs,” IEEE Elec. Dev. Lett., 24, 515 (2003).
[56] J. G. Fossum, J.-W. Yang, and V. P. Trivedi, “Suppression of corner effects in triple-gate MOSFETs,” IEEE Elec. Dev. Lett., 24, 745 (2003).
[57] M. Stadele, R. J. Luyken, M. Roosz, M. Specht, W. Rosner, L. Dreeskornfeld, J. Hartwich, F. Hofmann, J. Kretz, E. Landgref, and L. Risch, “A comprehensive study of corner effects in tri-gate transistors,” 34th Euro. Solid-St. Dev. Res. Conf., 165 (2004).
[58] C. W. J. Beenakker and H. van Houten in Solid St. Phys., edited by H. Ehrenreich and D. Turnbull (Academic Press, New York, 1991), 44.
[59] R. L. Liboff, Introductory quantum mechanics: Addison-Wesley (2003).
[60] V. Renard, Z. D. Kvon, O. Estibals, J. C. Portal, A. I. Toropov, A. K. Bakarov, and M. N. Kostrikin, “Negative parabolic magneto-resistance induced by electron–electron interaction in two-dimensional electron gas with diffusive transport,” Physica E, 22, 328 (2004).
[61] W. Lee and P. Su, “A comparative study of carrier transport for overlapped and nonoverlapped multiple-gate SOI MOSFETs,” IEEE Trans. Nanotech., 8, 444 (2009).
[62] A. Fujiwara, Y. Takahashi, and K. Murase, “Observation of single electron-hole recombination and photon-pumped current in an asymmetric Si single-electron transistor,” Phys. Rev. Lett., 78, 1532 (1997).
[63] P. W. Li, David M. T. Kuo, and Y. C. Hsu, “Photoexcitation effects on charge transports of Ge quantum-dot resonant tunneling diodes,” Appl. Phys. Lett., 89, 133105 (2006).
[64] David M. T. Kuo and Y. C. Chang, “Tunneling current and emission spectrum of a single-electron transistor under optical pumping,” Phys. Rev. B, 72, 085334 (2005).
[65] S. Tiwari, F. Rana, K. Chan, H. Hanafi, W. Chan, and D. Buchanan, “Volatile and non-volatile memories in silicon with nano-crystal storage,” IEEE Int. Elec. Dev. Meet., 521(1995).
[66] J. H. Wu and P. W. Li, “Ge nanocrystal metal-oxide-semiconductor transistors with Ge nanocrystals formed by thermal oxidation of poly-Si0.88Ge0.12,” Semi. Sci. Tech., 22, S89 (2007).
[67] Y. Maeda, N, Tsukamoto, Y. Yazawa, Y. Kanemitsu and Y. Masumoto, “Visible photoluminescence of Ge microcrystals embedded in SiO2 glassy matrices,” Appl. Phys. Lett., 59, 3168 (1991).
[68] V. Craciun, C. Boulmer-Leborgne, E. J. Nicholls, and I. W. Boyd, “Light emission from germanium nanoparticles formed by ultraviolet assisted oxidation of silicon‐germanium,” Appl. Phys. Lett., 69, 1506 (1996).
[69] B. H. Choi, S. W. Hwang, I. G. Kim, H. C. Shin, Y. Kim, and E. K. Kim, “Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor,” Appl. Phys. Lett., 73, 3129 (1998).
[70] W. K. Choi, W. K. Chim, C. L. Heng, L. W. Teo, Vincent Ho, V. Ng, D. A. Antoniadis, and E. A. Fitzgerald, “Observation of memory effect in germanium nanocrystals embedded in an amorphous silicon oxide matrix of a metal–insulator–semiconductor structure,” Appl. Phys. Lett., 80, 2014 (2002).
[71] P. W. Li, W. M. Liao, S. W. Lin, P. S. Chen, S. C. Lu, and M.-J. Tsai, “Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., 83, 4628 (2003).
[72] S. G. Park, W. S. Liu, and M. A. Nicolet, “Kinetics and mechanism of wet oxidation of GexSi1-x alloys,” J. Appl. Phys., 75, 1764 (1994).
[73] W. S. Liu, J. S. Chen, M. A. Nicolet, V. Arbet-Engels, and K. L. Wang, “Instability of a GexSi1-xO2 film on a GexSi1-x layer,” J. Appl. Phys., 72, 4444 (1992).
[74] W. S. Liu, E. W. Lee, M. A. Nicolet, V. Arbet-Engels, K. L. Wang, N. M. Abuhadba, and C. R. Aita, “Wet oxidation of GeSi at 700 oC,” J. Appl. Phys., 71, 4015 (1992).
[75] S. K. Kang, D. H. Ko, K. C. Lee, T. W. Lee, Y. H. Lee, T. H. Ahn, I. S. Yeo, S. H. Oh, and C. G. Park, “Wet oxidation behaviors of polycrystalline Si1-xGex films,” J. Vac. Sci. Tech., A19, 1617 (2001).
[76] F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel, and B. S. Meyerson, “Oxidation studies of SiGe,” J. Appl. Phys., 65, 1724 (1989).
[77] F. K. LeGoues, R. Rosenberg, and B. S. Meyerson, “Kinetics and mechanism of oxidation of SiGe: dry versus wet oxidation,” Appl. Phys. Lett., 54, 644 (1989).
[78] O. W. Holland, C. W. White, and D. Fathy, “Novel oxidation process in Ge+-implanted Si and its effect on oxidation kinetics,” Appl. Phys. Lett., 51, 520 (1987).
[79] J. Eugene, F. K. LeGoues, V. P. Kesan, S. S. Iyer, and F. M. d’’Heurle, “Diffusion versus oxidation rates in silicon-germanium alloys,” Appl. Phys. Lett., 59, 78 (1991).
[80] H. K. Liou, P. Mei, U. Gennser, and E. S. Yang, “Effects of Ge concentration on SiGe oxidation behavior,” Appl. Phys. Lett., 59, 1200 (1991).
[81] P. E. Hellberg, S. L. Zhang, F. M. d’’Heurle, and C. S. Petersson, “Oxidation of silicon-germanium alloys. I. An experimental study,” J. Appl. Phys., 82, 5773 (1997).
[82] P. E. Hellberg, S. L. Zhang, F. M. d’’Heurle, and C. S. Petersson, “Oxidation of silicon-germanium alloys. II. A mathematical model,” J. Appl. Phys., 82, 5779 (1997).
[83] K. B. Kim, T. S. Yoon, and J. Y. Kwon, “Semiconductor device having quantum dots,” U.S. Patent, 6424004 (2002).
[84] Y. Maeda, “Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism,” Phys. Rev. B, 51, 1658 (1995).
[85] L. Yue and Y. He, “Studies on room temperature characteristics and mechanism of visible luminescence of Ge-SiO2 thin films,” J. Appl. Phys., 81, 2910 (1997).
[86] X. L. Wu, T. Gao, G. G. Siu, S. Tong, and X. M. Bao, “Defect-related infrared photoluminescence in Ge+-implanted SiO2 films,” Appl. Phys. Lett., 74, 2420 (1999).
[87] Y. M. Niquet, G. Allan, C. Delerue, and M. Lannoo, “Quantum confinement in germanium nanocrystals,” Appl. Phys. Lett., 77, 1182 (2000).
[88] P. W. Li, David M. T. Kao, W. M. Liao, M.-J. Tsai, “Optical and electronic characteristics of germanium quantum dots formed by selective oxidation of SiGe/Si-on-insulator,” Jpn. J. Appl. Phys., 43, 7788 (2004).
[89] H. Yang, X. Wang, H. Shi, S. Xie, F. Wang, X. Gu and X. Yao, “Photoluminescence of Ge nanoparticles embedded in SiO2 glasses fabricated by a sol–gel method,” Appl. Phys. Lett., 81, 5144 (2002).
[90] A. V. Kolobov, S. Q. Wei, W. S. Yan, H. Oyangagi, Y. Maeda, and K. Tanaka, “Formation of Ge nanocrystals embedded in a SiO2 matrix: Transmission electron microscopy, x-ray absorption, and optical studies,” Phys. Rev. B, 67, 195314 (2003).
[91] D. Riabinina, C. Durand, M. Chaker, N. Rowell, and F. Rosei, “A novel approach to the synthesis of photoluminescent germanium nanoparticles by reactive laser ablation,” Nanotechnology, 17, 2152 (2006).
[92] C. W. Teng, J. F. Muth, R. M. Kolbas, K. M. Hassan, A. K. Sharma, A. Kvit, and J. Narayan, “Quantum confinement of E1 and E2 transitions in Ge quantum dots embedded in an Al2O3 or an AlN matrix,” Appl. Phys. Lett., 76, 43 (2000).
[93] P. Tognini, L. C. Andreani, M. Geddo, A. Stella, P. Cheyssac, R. Kofman, and A. Migliori, “Different quantum behavior of the E1 and E2 spectral structures in Ge nanocrystals,” Phys. Rev. B, 53, 6992 (1996).
[94] T. Takagahara and K. Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, 46, 15578 (1992).
[95] C. C. Wang, K. H. Chen, I. H. Chen, W. T. Lai, H. T. Chang, W. Y. Chen, J. C. Hsu, S. W. Lee, T. M. Hsu, M. T. Hung, and P. W. Li, “CMOS-compatible generation of self-organized 3D Ge quantum dot array for photonic and thermoelectric applications,” accepted by IEEE Trans. Nanotech. (2012).
[96] C. Y. Chien, Y. J. Chang, J. E. Chang, M. S. Lee, W. Y. Chen, T. M. Hsu, and P. W. Li, “Formation of Ge quantum dots array in layer-cake technique for advanced photovoltaics,” Nanotechnology, 21, 505201 (2010).
[97] P. W. Li, D. M. T. Kuo, and Y. C, Hsu, “Photoexcitation effects on charge transports of Ge quantum-dot resonant tunneling diodes,” Appl. Phys. Lett., 89, 133105 (2006).
[98] Y. C. Hsu, W. T. Lai, P.W. Li, and D. M. T. Kuo, “Room-temperature observation of current bistability and fine structures in germanium quantum dots/SiO2 resonant tunneling diodes,” Physica E, 38, 135 (2007).
[99] G. Feve, A. Mahe, J. M. berroir, T. Kontos, B. Placis, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, “An on-demand coherent single-electron source,” Science, 316, 1169 (2007).
[100] G. Feve, A. Mahe, J. M. Berroir, T. Kontos, B. Placais, D. C. Glattli, A. Cavanna, B. Etienne, and Y. Jin, “Realization of a time-controlled subnanosecond single electron source for ballistic qubits,” Physica E, 40, 954 (2008).
[101] A. P. Jauho, N. S. Wingreen, and Y. Meir, “Time-dependent transport in interacting and noninteracting resonant-tunneling systems,” Phys. Rev. B, 50, 5528 (1994).
[102] H. Haug, A. P. Jauho, Quantum kinetics in transport and optics of semiconductors: Springer, Heidelberg (1996).
[103] G. Stefanucci, and C.O. Almbladh, “Time-dependent partition-free approach in resonant tunneling systems,” Phys. Rev. B, 69, 195318 (2004).
[104] N.S. Wingreen, A.P. Jauho, and Y. Meir, “Time-dependent transport through a mesoscopic structure,” Phys. Rev. B, 48, 8487 (1993).
[105] M. Shangguan, Q. F. Sun, J. Wang, and H. Guo, “Generating spin current using an ac magnetic field,” Phys. Rev. B, 73, 125349 (2006).
[106] N. Gisin, P. L. Knight, I. C. Percival, R. C. Thompson, and D. C. Wilson, “Quantum state diffusion theory and a quantum jump experiment,” J. Mod. Opt., 40, 1663 (1993).
[107] W. T. Lai, David M. T. Kuo, and P. W. Li, “Transient current through a single germanium quantum dot,” Physica E, 41, 886 (2009).
[108] M. Buttiker, A. Pretre, and H. Thomas, “Dynamic conductance and the scattering matrix of small conductors,” Phys. Rev. Lett., 70, 4114 (1993).
[109] G. L. Chen, D. M. T. Kuo, W. T. Lai, and P. W. Li, “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnology, 18, 475402 (2007).
[110] S. F. Hu, Y. C. Wu, C. L. Sung, C. Y. Chang, and T. Y. Huang, “A dual-gate-controlled single-electron transistor using self-aligned polysilicon sidewall spacer gates on silicon-on-insulator nanowire,” IEEE Trans. Nanotech., 3, 93 (2004).
[111] L. P. Kouwenhoven, A. T. Johnson, N. C. van der Vaart, C. J. P. M. Harmans, and C. T. Foxon, “Quantized current in a quantum-dot turnstile using oscillating tunnel Barriers,” Phys. Rev. Lett., 67, 1626 (1991).
[112] M. Bockrath, D. H. Cobden, P. L. McEuen, N. G. Chopra, A. Zettl, A. Thess, and R. E. Smalley, “Single-electron transport in ropes of carbon nanotubes,” Science, 275, 1922 (1997).
[113] U. Meirav, M. A. Kastner, and S. J. Wind, “Single-electron charging and periodic conductance resonances in GaAs nanostructures,” Phys. Rev. Lett., 65, 771(1990)
[114] H. Ishikuro and T. Hiramoto, “Quantum mechanical effects in the silicon quantum dot in a single-electron transistor,” Appl. Phys. Lett., 71, 3691 (1997).
[115] D. H. Kim, S. K. Sung, K. R. Kim, J. D. Lee, B. G. Park, B. H. Choi, S. W. Hwang, and D. Ahn, “Silicon single-electron transistors with sidewall depletion gates and their application to dynamic single-electron transistor logic,” IEEE Trans. Elec. Dev., 49, 627 (2002).
[116] J. Weis, R. J. Haug, K. v. Klitzing, and K. Ploog, “Transport spectroscopy of a confined electron system under a gate tip,” Phys. Rev. B, 46, 12837 (1992).
[117] P. W. Li, W. M. Liao, David M. T. Kuo, S. W. Lin, P. S. Chen, S. C. Lu, and M. –J. Tsai, “Fabrication of a germanium quantum-dot single electron transistor with large Coulomb-blockade oscillations at room temperatures,” Appl. Phys. Lett., 85, 1532 (2004).
[118] D. Babic, R. Tsu, and R. F. Greene, “Ground-state energies of one-and two-electron silicon dots in an amorphous silicon dioxide matrix,” Phys. Rev. B, 45, 14150 (1992).
[119] P. W. Li, David M. T. Kuo, W. M. Liao, and W. T. Lai, “Study of tunneling currents through germanium quantum dot single-hole and -electron transistors,” Appl. Phys. Lett., 88, 213117 (2006).
[120] A. Fujiwara, Y. Takahashi, H. Namatsu, K. Kurihara and K. Murase, “Suppression of effects of parasitic metal-oxide-semiconductor field-effect transistors on Si single-electron transistors,” Jpn. J. Appl. Phys., 37, 3257 (1998).
[121] W. M. Liao, P. W. Li, David M. T. Kuo and W. T. Lai, “Room-temperature transient carrier transports in germanium single-electron/-hole transistors,” Appl. Phys. Lett., 88, 182109 (2006).
[122] David M. T. Kuo, P. W. Li, W. T. Lai, “Transient tunneling current of single electron transistors,” e-print cond-mat/0512378 (2005).
[123] D. Hisamoto, W. C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T. J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Elec. Dev., 47, 2320-5, (2000).
[124] David M. T. Kuo and Y. C. Chang, “Tunneling current spectroscopy of a nanostructure junction involving multiple energy levels,” Phys. Rev. Lett., 99, 086803 (2007).
[125] M. Saitoh, T. Murakami, and T. Hiramoto, “Large coulomb blockade oscillations at room temperature in ultranarrow wire channel MOSFETs formed by slight oxidation process,” IEEE Trans. Nanotech., 2, 241 (2003).
[126] M. Saitoh, H. Harata, and T. Hiramoto, “Room-temperature operation of current switching circuit using integrated silicon single-hole transistors,” Jpn. J. Appl. Phys., 44, L338 (2005).
[127] S. S. Walavalkar, C. E. Hofmann, A. P. Homyk, M. D. Henry, H. A. Atwater, and A. Scherer, “Tunable visible and near-IR emission from sub-10 nm etched single-crystal Si nanopillars,” Nano Lett., 10, 4423 (2010).
[128] L. Pavesi and D.J. Lockwood, “Silicon fundamentals for photonics applications,” Silicon Photonics, Topics Appl. Phys., 94, 1 (2004).
[129] R.A. Soref, S.J. Emelett, and W.R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A: Pure Appl. Opt., 8, 840 (2006).
[130] S. Assefa, F. Xia, and Y. A. Vlasov, “Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects,” Nature, 464, 80 (2010).
[131] S. Sahni, X. Luo, J. Liu, Y. H. Xie, and E. Yablonovitch, “Junction field-effect-transistor-based germanium photodetector on silicon-on-insulator,” Optics Lett., 33, 1138 (2008).
[132] S. S. Tseng, I. H. Chen, and P. W. Li, “Photoresponses in polycrystalline silicon phototransistors incorporating germanium quantum dots in the gate dielectrics,” Appl. Phys. Lett., 93, 191112 (2008).
[133] I. H. Chen, S. S. Tseng, and P. W. Li, “Thermal stability of germanium quantum dots phototransistors for near ultra-violet applications,” IEEE Photonics Tech. Lett., 21, 1674 (2009).
[134] S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and E. F. Schubert, “High extraction efficiency of spontaneous emission from slabs of photonic crystals,” Phys. Rev. Lett., 78, 3294 (1997).
[135] M. Boroditsky, R. Vrijen, T. F. Krauss, R. Coccioli, R. Bhat, and E. Yablonovitch, “Spontaneous emission extraction and purcell enhancement from thin-film 2-D photonic crystals,” J. Lightwave Tech., 17, 2096 (1999).
[136] T. Baba, K. Inoshita, H. Tanaka, J. Yonekura, M. Ariga, A. Matsutani, T. Miyamoto, F. Koyama, and K. Iga, “Strong enhancement of light extraction efficiency in GaInAsP 2-D-arranged microcolumns,” J. Lightwave Tech., 17, 2113 (1999).
[137] M. Boroditsky, T. F. Krauss, R. Coccioli, R. Vrijen, R. Bhat, and E. Yablonovitch, “Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals,” Appl. Phys. Lett., 75, 1036 (1999).
[138] A. A. Erchak, D. J. Ripin, S. Fan, P. Rakich, J. D. Joannopoulos, E. P. Ippen, G. S. Petrich, and L. A. Kolodziejski, “Enhanced coupling to vertical radiation using a two-dimensional photonic crystal in a semiconductor light-emitting diode,” Appl. Phys. Lett., 78, 563 (2001).
[139] H. Y. Ryu, J. K. Hwang, Y. J. Lee, and Y. H. Lee, “Enhancement of light extraction from two-dimensional photonic crystal slab structures,” IEEE J. Quantum Electron., 8, 231 (2002).
[140] G. Khitrova, H. M. Gibbs, F. Jahnke, M. Kira, and S. W. Koch, “Nonlinear optics of normal-mode-coupling semiconductor microcavities,” Rev. Mod. Phys., 71, 1591 (1999).
[141] S. Noda, A. Chutinan, and M. Imada, “Trapping and emission of photons by a single defect in a photonic bandgap structure,” Nature, 407, 608 (2000).
[142] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, and I. Kim, “Two-dimensional photonic band-gap defect mode laser,” Science, 284, 1819 (1999).
[143] S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, “Full three-dimensional photonic bandgap crystals at near-infrared wavelengths,” Science, 289, 604 (2000).
[144] S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold raman laser using a spherical dielectric microcavity,” Nature, 415, 621 (2002).
[145] P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petroff, L. Zhang, E. Hu, and A. Imamoglu, “A quantum dot single-photon turnstile device,” Science, 290, 2282 (2000).
[146] M. Okano, T. Yamada, J. Sugisaka, N. Yamanoto, M. Itoh, T. Sugaya, K. Komori, and M. Mori, “Analysis of two-dimensional photonic crystal L-type cavities with low-refractive-index material cladding,” J. Opt., 12, 075101 (2010).
[147] Y. Akahane, T. Asano, B. S. Song, and S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature, 425, 944 (2003).
[148] Y. Akahane, T. Asano, B. S. Song, and S. Noda, “Fine-tuned high-Q photonic-crystal nanocavity,” Opt. Express, 13, 1202 (2005).
[149] R. Coccioli, M. Boroditsky, K. W. Kim, Y. Rahmat-Samii, and E. Yablonovitch, “Smallest possible electromagnetic mode volume in a dielectric cavity,” IEE proc. Optoelectron., 145, 391 (1998).
[150] T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature, 432, 200 (2004).
[151] M. Notomi, A. shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, “Optical bistable switching action of Si high-Q photonic-crystal nanocavities,” Opt. Express, 13, 2678 (2005).
[152] G. Kozlowski, P. Zaumseil, M. A. Schubert, Y. Yamamoto, J. Bauer, J. Matejova, T. Schulli, B. Tillack, and T. Schroeder, “Compliant substrate versus plastic relaxation effects in Ge nanoheteroepitaxy on free-standing Si(001) nanopillars,” Appl. Phys. Lett., 99, 141901 (2011).
[153] D. Zubia and S. D. Hersee, “Nanoheteroepitaxy: The application of nanostructuring and substrate compliance to the heteroepitaxy of mismatched semiconductor materials,” J. Appl. Phys., 85, 6492 (1999).
[154] K. H. Chen, C. Y. Chien and P. W. Li, “Precise Ge quantum dot placement for quantum tunneling devices,” Nanotechnology, 21, 055302 (2010).
[155] K. H. Chen, C. Y. Chien, W. T. Lai, T. George, A. Scherer, and P. W. Li, “Controlled heterogeneous nucleation and growth of germanium quantum dots on nanopatterned silicon dioxide and silicon nitride substrates,” Cryst. Growth & Des., 11, 3222 (2011).
[156] 陳啟東, “單電子電晶體簡介,” 物理雙月刊, 二十六卷三期, 483 (2004).
指導教授 李佩雯(Pei-Wen Li) 審核日期 2012-8-1
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明