博碩士論文 995201068 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:18.118.27.72
姓名 王怡婷(Yi-Ting Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 600 V溝渠式逆向導通絕緣閘雙極性電晶體設計與分析
(A Design and Analysis of 600V Trench Gate Reverse Conducting Insulated Gate Bipolar Transistor)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 大多數電子產品的發展趨勢一直是以消耗更多的電力來實現高性能及多功能,在能源產業設備使用的半導體中,功率半導體所佔的比例超過50 %,並且被廣泛應用於家電、電腦、汽車及鐵路等領域,由於這些應用設備有望擴大普及,使功率半導體使用的比例上升,功率半導體市場將逐年擴大成長。
隨著原油價格逐年高漲,開發節能產品與新能源產品的時機在全球日趨成熟,取代汽油車的電動汽車被全力推進。在功率半導體中,IGBT市場規模擴大的背景就在於混合動力車及電動汽車的需求增加。目前,汽車廠商競相發佈了增產混合動力車的計劃,並打算以混合動力車一舉取代原來的汽油車。由此更可見IGBT在未來市場發展上存在著無窮潛力。
近年來更由於半導體元件積體化(Integration)加上IGBT模組在電路應用中時常並聯二極體(Diode)來使用,為了節省電路上不需額外的零件,因此發展出將IGBT和diode結構結合在一起的逆向導通絕緣閘雙極性電晶體(Reverse Conducting- IGBT)的結構,本篇論文將使用薄晶圓(Thin Wafer)技術搭配場終止(Field-Sop)結構設計600 V RC-IGBT,並針對如何達到低導通壓降、高崩潰電壓與改善RC-IGBT之逆向恢復特性作一系列的研究與探討,設計出最佳化RC-IGBT。
經由Silvaco 軟體ATHENA與ATLAS模擬元件製程方法並進行電性分析與設計,結果顯示用具有N載子儲存層(Carrier Stored, CS n layer)RC-IGBT能達到600 V以上的耐壓,且與沒有N載子儲存層RC-IGBT相較之下能有效降低導通壓降約13 %,還能有效改善內部二極體逆向恢復特性,使逆向峰值電流(IRAM)降低約0.4 A,並使逆向恢復電荷(Qrr)減少約17 %。
摘要(英) Most of the development trend of electronic products has always been to achieve high performance and multi-function by consuming more power. In the energy industry equipment used by semiconductor, power semiconductors, the proportion of over 50%. Power semiconductors are widely used in the fields of home appliances, computers, automotive and railway. Since these applications are expected to expand the popularity of the use of power semiconductors has risen, the power semiconductor market will expand year by year growth.
With crude oil prices rising year by year, the timing of the development of energy-saving products and energy products in the world is becoming increasingly mature, full propulsion of electric vehicles to replace petrol cars. In power semiconductors, IGBT market scale expanding background is an increase in demand for hybrid and electric cars. Recently, car manufacturers competing yield hybrid plan, and intends to replace the original car’’s gasoline hybrid in one fell swoop. Thus more visible IGBT there is enormous potential in the future market development.
In recent years, because semiconductor components were integrated and the IGBT modules which paralleled diode were used in circuit applications, Reverse Conducting- IGBT that could combine the IGBT and Diode structure were developed, in order to save the circuit from additional parts. In this paper, I will use the Thin Wafer technology and Field-Sop structure to design 600V RC-IGBT. In addition, I will do a series of research and discussion for how to achieve low on-state voltage, high breakdown voltage and improve the reverse recovery characteristics of RC-IGBT, designing to optimize RC-IGBT.
Through the Silvaco software ATHENA and ATLAS simulate component process method and conduct electrical analysis and design, showed the RC-IGBT that has Carried Stored N layer can reach more than 600 V withstand voltage. Compared with the RC-IGBT without Carried Stored N layer , it can effectively improve the on-state voltage about 13% and improve built-in diode reverse recovery performance, that the reverse peak current decreased approximately 0.4A and the reverse recovery charge can reduce more than 17%.
關鍵字(中) ★ 絕緣閘雙極性電晶體
★ 逆向導通
關鍵字(英) ★ Insulated Gate Bipolar Transistor
★ RC-IGBT
★ CSTBT
★ Reverse Conducting
論文目次 摘要............................................................................................................................IV
Abstract.........................................................................................................................V
致謝............................................................................................................................VI
目錄............................................................................................................................VII
圖目錄......................................................................................................................... X
表目錄...................................................................................................................... XII
第一章 緒論 ............................................................................................................. 1
1.1 研究背景....................................................................................................... 1
1.2 應用範圍....................................................................................................... 3
1.3 論文架構....................................................................................................... 4
第二章 IGBT技術發展.............................................................................................. 5
2.1 前言............................................................................................................... 5
2.2 IGBT表面結構發展...................................................................................... 5
2.2.1 平面式(Planar) IGBT............................................................................ 5
2.2.2 溝渠式(Trench) IGBT........................................................................... 8
2.3 IGBT背部結構發展...................................................................................... 9
2.3.1 穿透型(Punch-Through, PT) IGBT.....................................................10
2.3.2 非穿透型(Non-Punch Through, NPT) IGBT..................................... 10
2.3.3 場終止型(Field-Stop, FS) IGBT........................................................ 11
2.3.4 逆向導通(Reverse-Conducting, RC) IGBT....................................... 13
2.4 IGBT相關技術發展......................................................................................14
2.4.1 電子注入增強型IGBT(Injection Enhanced IGBT, IEGT)........14
2.4.2 溝渠式載子儲存IGBT(Carrier Stored Trench Gate IGBT, CSTBT).15
2.5 結論..............................................................................................................16
第三章 IGBT操作原理與FS-IGBT設計模擬分析.................................................17
3.1前言................................................................................................................17
3.2 IGBT結構與工作原理...................................................................................18
3.2.1 IGBT元件結構.....................................................................................18
3.2.2 IGBT工作原理.....................................................................................22
3.2.2.1 導通狀態(On-State)............................................................23
3.2.2.2 關斷狀態(Turn-Off)............................................................23
3.2.2.3 反向阻斷(Reverse Blocking)...............................................24
3.2.2.4 正向阻斷(Forward Blocking)..............................................24
3.2.2.5 導通與關斷過程.......................................................................27
3.2.2.6 閂鎖效應(Latch-up)................................................................28
3.3 IGBT崩潰機制….........................................................................................29
3.3.1 累增型崩潰(Avalanche Breakdown)...................................................29
3.3.2 穿透型崩潰(Punch Through Breakdown)...........................................31
3.4 FS-IGBT元件設計與電性模擬分析............................................................33
3.4.1 製程方法與模擬步驟..........................................................................33
3.4.2 不同注入效率之FS-IGBT模擬與分析...............................................41
3.4.3 不同場終止層(n field stop layer)濃度探討...................................43
3.5結論................................................................................................................44
第四章 RC-IGBT操作原理與設計模擬分析..........................................................45
4.1前言................................................................................................................45
4.2 RC-IGBT元件結構與工作原理....................................................................46
4.2.1 RC-IGBT元件結構...............................................................................46
4.2.2 RC-IGBT工作原理...............................................................................48
4.2.2.1 IGBT導通狀態...........................................................................49
4.2.2.2 內部二極體導通狀態...............................................................49
4.2.2.3 正向阻斷 .................................................................................49
4.2.2.4 逆向恢復特性...........................................................................50
4.3 RC-IGBT元件設計與模擬分析....................................................................51
4.3.1 製程方法與模擬步驟..........................................................................51
4.3.2 不同多重晶胞個數與不同晶胞總尺寸之探討..................................60
4.3.3 背部P+和N+面積比例之探討............................................................63
4.3.4 場終止濃度對晶胞總尺寸影響之探討..............................................65
4.4 具有N載子儲存層之RC-IGBT元件設計與模擬分析...............................69
4.4.1 製程方法與模擬步驟..........................................................................69
4.4.2 不同N載子儲存層濃度之探討...........................................................74
4.5 有無N載子儲存層的RC-IGBT特性比較與分析..........................................80
4.6 結論................................................................................................................81
第五章 結論.............................................................................................................82
參考文獻…….............................................................................................................83
參考文獻 [1] B.J. Baliga, Fundamentals of Power Semiconductor Devices, Springer Verlag, pp736-754 ,2008.
[2] H. Takahashi, A. Yamamoto, S. Aono, T. Minato, “1200V Reverse Conducting IGBT,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 133-136, 2004.
[3] 王晟康, “注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析,” 國立中央大學電機工程學系碩士論文, 2011。
[4] 林偉捷, “應用電子束輻射提升絕緣閘雙極性電晶體切換速度之研究與分析,” 國立清華大學電機工程學系碩士論文, 1990。
[5] T. Laska, M. Munzer, F. Pfirsch, C. Schaeffer, T. Schmidt, “The Field Stop IGBT (FS IGBT). A new power device concept with a great improvement potential,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 355-368, 2000.
[6] Vinod Kumar Khanna, The Insulated Gate Bipolar Transistor IGBT Theory and Design, Springer Verlag , pp402-406 ,2003.
[7] 林毓誠, “600V 新型溝渠式載子儲存絕緣閘雙極性電晶體之設計,” 國立中央大學電機工程學系碩士論文, 2011。
[8] M.T. Rahimo, N.Y.A Shammas, “Freewheeling Diode Reverse Recovery Failure Modes in IGBT Applications,” IEEE Transactions on Industry Applications., vol.37, no.2, pp. 1-10 , 2001.
[9] 林書賢, “具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體,” 國立中央大學電機工程學系碩士論文, 2011。
[10] 薛億在, “智慧型IGBT設計之研究,” 大葉大學電機工程學系碩士論文, 2003。
[11] H. Ruthing, F. Hille, F.-J. Niedernostheide, H.-J. Schulze, B. Brunner, “600 V Reverse Conducting (RC-)IGBT for Drives Applications in Ultra-Thin Wafer Technology,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 89-92, 2007.
[12] D. Kumar, M. Sweet, K. Vershinin, L. Ngwendson, E.M.S. Narayanan, “RC-TCIGBT: A Reverse Conducting Trench Clustered IGBT,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 161-164, 2007.
[13] S. Voss, F. Niedernostheide, H. Schulze, “Anode Design Variation in 1200-V Trench Field-stop Reverse-conducting IGBTs,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 169-172, 2008.
[14] Junho Song, Junbae Lee, Daewoong Chung, F. Wolfgang, “The New intelligent power modules with Reverse conducting IGBTs and SOI driver for low power motor drives,” International Conference on Electrical Machines and Systems, Proc. ICEMS, pp. 384-386, 2010.
[15] Junho Song, Junbae Lee, Daewoong Chung, Bumseok Suh, F. Wolfgang, “A new intelligent power module with Reverse conducting IGBTs for up to 2.5kW motor drives,” International Power Electronics Conference, Proc. IPEC, pp. 156-158, 2010.
[16] M. Antoniou, F. Udrea, F. Bauer, I. Nistor, “A new way to alleviate the RC-IGBT snapback phenomenon: The Super Junction solution,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD, pp. 153-156, 2010.
[17] H. Takahashi, H. Haruquchi, H. Hagino, T. Yamada, “Carrier stored trench-gate bipolar transistor (CSTBT)-A novel power device for high voltage application,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 349-352, 1996.
[18] A. Kopta, M. Rammo, S. Eicher, U. Schlapbach, “A Landmark in Electrical Performance of IGBT Modules Utilizing Next Generation Chip Technologies,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp.1-4, 2006.
[19] Wesley Chih-Wei Hsu, F. Udrea, Ho-Tai Chen, Wei-Chieh Lin, “A novel double-gate Trench Insulated Gate Bipolar transistor with ultra-low on-state voltage,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 291-294 , 2009.
[20] T. Matsudai, A. Nakagawa, “Ultra High Switching Speed 600 V Thin Wafer PT-IGBT Based on New Turn-off Mechanism,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 285-288 , 2002.
[21] H. Takahashi, S. Aono, E. Yoshida, J. Moritani, S. Hine, “600V CSTBT Having Ultra Low On-State Voltage,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD ,pp. 445-448 , 2001.
[22] R. Constapel, J. Korec, B.J. Baliga, “Trench-IGBTs with Integrated Diverter Structures,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 201-206 , 1995.
[23] Lingling Yang, Kaihang Li, Dongming Wu, “Analysis and characterization of a new trench IGBT with improved layer,” IEEE Conference on Industrial Electronics and Applications, Proc. ICIEA, pp. 2503-2506 , 2008.
[24] Sinsu Kyoung, Jong-Seok Lee, Sang-Hyeon Kwak, Ey-Goo Kang, Man Young Sung, “A Novel Trench IGBT With a Deep P+ Layer Beneath the Trench Emitter,” IEEE Electron Device Letters, vol.30, no.1 , pp. 82-84 , 2009.
[25] M. Rahimo, U. Schlapbach, A. Kopta, J. Vobecky, D. Schneider, A. Baschnagel, “A High Current 3300V Module Employing Reverse Conducting IGBTs Setting a New Benchmark in Output Power Capability,” IEEE International Symposium on Power Semiconductor Devices and ICs, Proc. ISPSD , pp. 68-71 , 2008.
[26] V.P. Popov, Y.I. Krasnikov, “Reverse characteristics of a snappy recovery diode with the current snubber in comparison with a soft recovery diode and SiC Schottky type diode,” European Conference on Power Electronics and Applications, Proc. EPE, pp. 1-10 , 2009.
[27] M. Adamowicz, S. Giziewski, J. Pietryka, Z. Krzeminski, “Performance comparison of SiC Schottky diodes and silicon ultra fast recovery diodes,” International Conference-Workshop Compatibility and Power Electronics , Proc. CPE, pp. 144-149 , 2011.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明