博碩士論文 995201007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.225.149.95
姓名 佘孟儒(Meng-ju She)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 矽基板偏壓對氮化鋁鎵/氮化鎵蕭特基二極體之電性影響
(Effect of Si Substrate Bias on Electric Characteristics in AlGaN/GaN Schottky Barrier Diode)
相關論文
★ 電子式基因序列偵測晶片之原型★ 增強型與空乏型砷化鋁鎵/砷化銦鎵假晶格高電子遷移率電晶體: 元件特性、模型與電路應用
★ 使用覆晶技術之微波與毫米波積體電路★ 注入增強型與電場終止型之絕緣閘雙極性電晶體佈局設計與分析
★ 以標準CMOS製程實現之850 nm矽光檢測器★ 600 V新型溝渠式載子儲存絕緣閘雙極性電晶體之設計
★ 具有低摻雜P型緩衝層與穿透型P+射源結構之600V穿透式絕緣閘雙極性電晶體★ 雙閘極金氧半場效電晶體與電路應用
★ 空乏型功率金屬氧化物半導體場效電晶體 設計、模擬與特性分析★ 高頻氮化鋁鎵/氮化鎵高速電子遷移率電晶體佈局設計及特性分析
★ 氮化鎵電晶體 SPICE 模型建立 與反向導通特性分析★ 加強型氮化鎵電晶體之閘極電流與電容研究和長時間測量分析
★ 新型加強型氮化鎵高電子遷移率電晶體之電性探討★ 氮化鎵蕭特基二極體與高電子遷移率電晶體之設計與製作
★ 整合蕭特基p型氮化鎵閘極二極體與加強型p型氮化鎵閘極高電子遷移率電晶體之新型電晶體★ 垂直型氧化鎵蕭特基二極體於氧化鎵基板之製作與特性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要針對在低成本p型摻雜低阻值矽(111)基板上進行氮化鋁鎵/氮化鎵異質結構研究,在此磊晶結構上製作水平式氮化鋁鎵/氮化鎵蕭特基二極體,並進行相關磊晶與元件之特性分析。
  在磊晶結構上,利用X光繞射儀量測GaN(002)以及GaN(102)面之半高寬值,可分析磊晶內螺旋差排缺陷以及刃狀差排缺陷多寡,得到之半高寬值分別為750、1602 arcsec;再利用霍爾量測確認磊晶電特性,測量得到之電子遷移率為1430 cm2/V-sec、片電子濃度為6.13?1012 cm-2 、片電阻率為726.1 Ω/square。在氮化鋁鎵/氮化鎵蕭特基二極體製程上,採用不同佈局之水平式蕭特基二極體,使陽極邊緣電場有效分散以達到1400伏特之崩潰電壓。而逆向回復時間為13 nsec,相對於傳統矽基蕭特基二體快非常多。
  此外,利用低阻值矽基板導電特性,將矽基板額外加上電極進行元件的特性分析,發現矽基板接地或者外加偏壓方式能夠改變元件順偏以及逆偏電性,故本實驗更進一步討論矽基板偏壓造成元件常溫以及變溫下之電性改變。
摘要(英) We have demonstrated lateral AlGaN/GaN schottky barrier diodes (SBD) on low-resistive silicon substrate. Because of large lattice mismatch between silicon and GaN material, a 2 μm buffer layer had been grown on Si substrate to reduce stress between silicon and GaN.
  X-ray diffraction measurement was used to characterize the grown GaN quality. The full width at maximum value (FWHM) on GaN (002) was about 750 arcsec. This value showed a good understanding for AlGaN/GaN epitaxy on Si substrate. Hall measurement was also used to investigate the sheet carrier density, sheet resistance and electron mobility of grown AlGaN/GaN film; the measured value were 6.13?1012 cm-2, 726 Ω/square and 1430 cm2/V-sec, respectively.
  In the fabrication of Schottky barrier diodes, four different device layouts were investigated to reduce the high electric field at the edge of anode for breakdown voltage improvement, the resulted breakdown voltage was increased to 1400 V. Based on the low-resistivity of Silicon substrate, we also biased Si substrate to further study the electrical characteristic of AlGaN/GaN Schottky barrier diode. The substrate biasing effect was observed in both forward and reverse characteristics of diodes. Furthermore, we characterized SBDs at different temperatures to investigate if biasing silicon substrate would result in the the carrier confinement at interface of Al0.25Ga0.75N and GaN and thus device performance
關鍵字(中) ★ 矽基板偏壓
★ 氮化鋁鎵/氮化鎵
★ 蕭特基二極體
關鍵字(英) ★ AlGaN/GaN
★ schottky barrier diode
★ biasing Si substrate
論文目次 摘要 IV
Abstract V
致謝 VI
目錄 VII
圖目錄 IX
表目錄 XII
第一章 緒論 1
1.1前言 1
1.2功率氮化鎵蕭特基二極體國內外相關研究成果 3
1.3本實驗研究動機與目的 6
1.4 論文架構 8
第二章 氮化鋁鎵/氮化鎵磊晶於矽基板之材料特性與蕭特基二極體製程 9
2.1前言 9
2.2 氮化鋁鎵/氮化鎵成長於矽基板之結構 10
2.3霍爾量測了解通道特性以及X光繞射儀量測觀察磊晶品質 13
2.4氮化鋁鎵/氮化鎵蕭特基二極體元件製作步驟 16
2.5電容-電壓量測方式探討元件完成之通道載子濃度以及深度關係 20
2.5.1氮化鋁鎵/氮化鎵蕭特基二極體之電容-電壓量測介紹 20
2.5.2氮化鋁鎵/氮化鎵蕭特基二極體通道載子濃度特性以及深度關係 21
2.6 結論 22
第三章 氮化鋁鎵/氮化鎵蕭特基二極體元件電性量測以及分析 23
3.1 前言 23
3.2 氮化鋁鎵/氮化鎵蕭特基二極體室溫電性介紹 23
3.2.1氮化鋁鎵/氮化鎵蕭特基二極體元件崩潰特性 23
3.2.2氮化鋁鎵/氮化鎵蕭特基二極體室溫順偏導通特性 28
3.2.2.1順向電流導通特性、開啟電壓以及特徵開啟電阻介紹 28
3.2.2.2蕭特基位障高度量測以及介紹 30
3.2.2.3理想因子量測以及介紹 31
3.3氮化鋁鎵/氮化鎵蕭特基二極體元件變溫下之特性 34
3.3.1 前言 34
3.3.2 元件變溫下順偏特性介紹及分析 36
3.3.3 測試元件變溫下逆偏特性介紹及分析 43
3.4氮化鋁鎵/氮化鎵蕭特基二極體元件逆向回復時間量測與介紹 45
3.5結論 48
第四章 矽基板偏壓之氮化鋁鎵/氮化鎵蕭特基二極體元件特性的改變 50
4.1 前言 50
4.2矽基板偏壓之元件崩潰特性探討 52
4.3矽基板偏壓之元件順偏導通特性探討 58
4.4變溫狀態下矽基板偏壓之元件電性探討 67
4.4.1前言 67
4.4.2變溫狀態以及矽基板偏壓對於元件順偏導通特性之影響 74
4.4.3變溫狀態以及矽基板偏壓對於元件逆偏截止特性之影響 75
4.5結論 77
第五章 結論 79
參考文獻 81
參考文獻 [1] B. Ozpineci , M. S. Chinthavali, L. M. Tolbert, “Enhancing Power Electronics Devices with Wide Bandgap Semiconductors,” Oak Ridge National Laboratory, US.
[2] M. Ostling, R. Ghandi, C. M. Zetterling, “SiC power devices – present status, applications and future perspective,” IEEE International Symposium on Power Semiconductor Devices, pp. 10 – 15, 2011.
[3] CREE Inc., “Cree Technology Breakthrough Enables 50 Amp Silicon Carbide Power Devices, Bringing Efficiency and Cost Savings to a Broader Range of High-Power Applications,” http://www.cree.com/news-and-events/cree-news/press-releases/2012/may/120502-50a-power, 2012.
[4] A.P. Zhang, F. Ren, X.A. Cao, S.J. Pearton, H. Cho, J. Han, J.I. Chyi, C.M. Lee, C.C. Chuo, S.N.G. Chu, R.G. Wilson, ”High voltage GaN schottky rectifiers,” IEEE Transactions on electron devices, Vol. 47, pp. 692 - 696, 2000.
[5] J. W. Johnson, A. P. Zhang, Wen-Ben Luo, Fan Ren, Stephen J. Pearton, Fellow, IEEE, S. S. Park, Y. J. Park, and J.I. Chyi, “Breakdown Voltage and Reverse Recovery Characteristics of Free-Standing GaN Schottky Rectifiers,” IEEE Transactions on electron devices, Vol. 49, pp. 32 - 36, 2002.
[6] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov et al., “Al composition dependence of breakdown voltage in AlxGa1−xN Schottky rectifiers,” Applied Physics Letters, Vol.76, pp. 1767 - 1769, 2000.
[7] A. P. Zhang, G. Dang, F. Ren, J. Han, A. Y. Polyakov et al., “Temperature dependence and current transport mechanisms in AlxGa1−xN Schottky rectifiers,” Applied Physics Letters, Vol.76, pp. 3816 - 3818, 2000.
[8] A. P. Zhang, J. W. Johnson, F. Ren, J. Han, A. Y. Polyakov et al., “Lateral AlxGa1−xN power rectifiers with 9.7 kV reverse breakdown voltage,” Applied Physics Letters, Vol.78, pp. 823 - 825, 2001.
[9] A. P. Zhang, J. W. Johnson, B. Luo, F. Ren, S. J. Pearton et al., “Vertical and lateral GaN rectifiers on free-standing GaN substrates,” Applied Physics Letters, Vol. 79, pp. 1555 - 1557, 2001.
[10] W. Chen, K. Y. Wong, W. Huang, K.J. Chen, “High-performance AlGaN/GaN lateral field-effect rectifiers compatible with high electron mobility transistors,” Applied Physics Letters, Vol. 92, pp. 287 - 288, 2008.
[11] S. C. Lee, M. W. Ha, J.C. Her, S.S. Kim, J.Y. Lim, K.S. Seo, M.K. Han, “High Breakdown Voltage GaN Schottky Barrier Diode employing Floating Metal Rings on AlGaN/GaN Hetero-junction,” IEEE International Symposium on Power Semiconductor Devices, pp. 247 - 250, 2005.
[12] H. Ishida, D. Shibata, H. Matsuo, M.Yanagihara, Y. Uemoto, T. Ueda, T. Tanaka , D. Ueda, “GaN-based Natural Super Junction Diodes with Multi-channel Structures,” IEEE International Electron Device Meeting, pp. 1 - 4, 2008.
[13] G.Y. Lee, H.H. Liu, J.I. Chyi,” High-Performance AlGaN/GaN Schottky Diodes With an AlGaN/AlN Buffer Layer,” IEEE Electron Device Letters, Vol. 32, pp. 1519 - 1521, 2011.
[14] D. Shibata, K. Kaibara, T. Murata, Y. Yamada, T. Morita, Y. Anda, M. Ishida, H. Ishida, T. Ueda, T. Tanaka, D. Ueda, “GaN-based Multi-Junction Diode with Low Reverse Leakage Current Using P-type Barrier Controlling Layer,” IEEE International Electron Device Meeting, pp. 26.2.1 - 26.2.4, 2011.
[15] E. B. Treidel, O. Hilt, R. Zhytnytska, A. Wentzel, C. Meliani, J. Wurfl, G. Trankle, “Fast-Switching GaN-Based Lateral Power Schottky Barrier Diodes With Low Onset Voltage and Strong Reverse Blocking,” IEEE Electron Device Letters, Vol. 33, pp. 357 - 359, 2012.
[16] S. Yoshida, J. Li, H. Takehara, H. Kambayashi, N. Ikeda, “Fabrication of AlGaN/GaN HFET with a high breakdown voltage of over 1050 V,” IEEE International Symposium on Power Semiconductor Devices, pp. 1 – 4, 2006.
[17] A. Kamada, K. Matsubayashi, A. Nakagawa, Y. Terada, T. Egawa, “High-Voltage AlGaN/GaN Schottky Barrier Diodes on Si Substrate with Low-Temperature GaN Cap Layer for Edge Termination,” IEEE International Symposium on Power Semiconductor Devices, pp. 225 - 228, 2008.
[18] I. B. Rowena, S. L. Selvaraj, T. Egawa,” Buffer Thickness Contribution to Suppress Vertical Leakage Current With High Breakdown Field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Letters, Vol. 32, pp. 1534 - 1536, 2011.
[19] R. Cuerdo, F. Calle, A. F. Brana, Y. Cordier, M. Azize, N. Baron, S. Chenot, E. Munoz, “High temperature behavior of GaN HEMT devices on Si(111) and sapphire substrates,” Physica Status Solidi(c), Vol.5, pp. 1971 - 1973, 2008.
[20] J. Kuzmik, P. Javorka, A. Alam, M. Marso, M. Heuken, P. Kordoˇs, “Determination of Channel Temperature in AlGaN/GaN HEMTs Grown on Sapphire and Silicon Substrates Using DC Characterization Method,” IEEE Transactions on electron devices, Vol. 49, pp. 1496 - 1498, 2002.
[21] R. Chu, D. Zehnder, B. Hughes, K. Boutros, “High Performance GaN-on-Si Power Switch: Role of Substrate Bias in Device Characteristics,” Device Research Conference, pp. 223 - 224, 2011.
[22] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann et al., “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol. 87, issue 1, pp. 334 - 344, 2000.
[23] R. Wang, G. Li, O. Laboutin, Y. Cao, W. Johnson, G. Snider, P. Fay , D. Jena, H. Xing, “210-GHz InAlN/GaN HEMTs With Dielectric-Free Passivation,” IEEE Electron Device Letters, Vol. 32, issue 7, pp. 892 - 894, 2011.
[24] D. S. Lee, X. Gao, S. Guo, T. Palacios, “InAlN/GaN HEMTs With AlGaN Back Barriers,” IEEE Electron Device Letters, Vol. 32, issue 5, pp. 617 - 619, 2011.
[25] D. S. Kim, K. S. Im, H. S. Kang, K. W. Kim, S. B. Bae, J. K. Mun, E. S. Nam, J. H. Lee, “Normally-Off AlGaN/GaN Metal–Oxide–Semiconductor Heterostructure Field-Effect Transistor with Recessed Gate and p-GaN Back-Barrier,” Japanese Journal of Applied Physics, Vol. 51, pp. 034101-1 - 034101-5, 2012.
[26] V. D. Pauw, “A method of measuring specific resistivity and Hall effect of discs of arbitrary shape,” Philips Technical Review, Vol. 20, pp. 220 - 224, 1958.
[27] B. N. Pantha, R. Dahal, M. L. Nakarmi, N. Nepal, J. Li, J. Y. Lin, H. X. Jiang, “Correlation between optoelectronic and structural properties and epilayer thickness of AlN,” Applied Physics Letters, Vol. 90, pp. 241101 - 241101-3, 2007.
[28] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Applied Physics Letters, Vol. 81, pp. 79 - 81, 2002.
[29] M. A. L. Johnson, S. Fujita, W. H. Rowland, Jr., K. A. Bowers, W. C. Hughes, Y. W. He, N. A. El-Masry, J. W. Cook, Jr., J. F. Schetzina, “Molecular beam epitaxy growth and properties of GaN, AlxGa1-xN, and AlN on GaN/SiC substrates,” Journal of Vacuum Science and Technology, Vol. 14, pp. 2349 -2353, 1996.
[30] M. Leys, K. Cheng, J. Derluyn, S. Degroote, M. Germain, G.Borghs, C. A. Taylor, P. Dawson, “Growth and characterization of unintentionally doped GaN grown on silicon(111) substrates,” Journal of Crystal Growth, Vol. 310, pp. 4888 – 4890, 2008.
[31] O. Ambacher, et al, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, Vol.85, pp. 3222 - 3233, 2000.
[32] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, E. A. Preble, “Temperature-dependent electrical characteristics of bulk GaN Schottky rectifier,” Journal of Applied Physics, Vol. 101, pp. 024506 - 024506-4, 2007.
[33] Y. H. Choi, J. Lim, K. H. Cho, M.K. Han, “High Voltage AlGaN/GaN Schottky Barrier Diode Employing the Inductively Coupled Plasma-Chemical Vapor Deposition SiO2 Passivation, “ IEEE International Conference on Power Electronics, pp. 71 - 73, 2007.
[34] F. Iucolano, F. Roccaforte, F. Giannazzo, V. Raineri, “Barrier inhomogeneity and electrical properties of Pt/GaN Schottky contacts,” Journal of Applied Physics, Vol.102, pp. 113701 - 113701-8, 2007.
[35] 林佩瑩, ”高崩潰電壓氮化鋁鎵/氮化鎵蕭基二極體之特性分析,” 碩士論文, 國立中央大學, 2010.
[36] Z. Tekeli, Ş. Altındal, M. Cakmak, S. Ozcelik, D. Calışkan, E. Ozbay, “The behavior of the I-V-T characteristics of inhomogeneous Ni/Au -Al0.3Ga0.7N/AlN/GaN heterostructures at high temperatures,” Journal of Applied Physics, Vol. 102, pp.054510 - 054510-8, 2007.
[37] M. Sze, Physics of Semiconductor Devices, 國立交通大學, Third edition, 2008.
[38] T. McDonald, V. President, “GaN Based Power Technology Stimulates Revolution in Conversion Electronics,” Bodo’s Power Systems, pp. 1 – 4, 2009.
[39] Y. Zhou, M. Li, D. Wang, C. Ahyi, C.C. Tin, J. Williams, M. Park, N. M. Williams, A. Hanser, ” Electrical characteristics of bulk GaN-based Schottky rectifiers with ultrafast reverse recovery,” Applied Physics Letters, Vol. 88, pp. 113509 - 113509-3, 2006.
[40] 柯宗佑, “具快速逆向回復時間之矽基600伏氮化鋁鎵/氮化鎵蕭基二極體,” 碩士論文, 國立中央大學, 2011.
[41] W. Lim, J. H. Jeong, J.H. Lee, S. B. Hur, J. K. Ryu , “Temperature dependence of current-voltage characteristics of Ni-AlGaN/GaN Schottky diodes,” Applied Physics Letters, Vol. 97, pp. 242103-1 - 242103-3, 2010.
[42] R. Chu, D. Zehnder, B. Hughes, K. Boutros, “High Performance GaN-in-Si Power Switch: Role of Substrate Bias in Device Characteristics,” Device Research Conference, pp. 223 - 224, 2011.
[43] Y. H. Lo , M. Werner , S. Wang, “The electrical and optical properties of a four-terminal top back gate FET,” IEEE Transactions on Electron Devices, Vol.33, pp.717 - 722, 1986.
[44] B. Brar, H. Kroemer, “Influence of impact ionization on the drain conductance in InAs-AlSb quantum well heterostructure field-effect transistors,” IEEE Electron Devise Letters, Vol. 16, pp. 548-550, 1995.
[45] M. B. Patil, S. Agarwala, H. Morkoc, “Back-gated field effect in a double heterostructure modulation-doped field-effect transistor,” Electronic Letters, Vol. 24, pp. 925 - 926, 1988.
[46] S. Yoshida, N. Ikeda, J. Li, T. Wada, H. Takehara, “A new GaN based field effect Schottky barrier diode with a very low on-voltage operation,” IEEE International Symposium on Power Semiconductor Devices, pp. 323 – 326, 2004.
[47] Y. Zhou, D. Wang, C. Ahyi, C. C. Tin, J. Williams, M. Park , N. M. Williams, A. Hanser, “High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, Vol. 50, pp.1744 – 1747, 2006.
指導教授 辛裕明(Yue-Ming Hsin) 審核日期 2012-8-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明