博碩士論文 946203003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.135.200.211
姓名 周郁傑(Yu-Chieh Chou)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 地球磁層頂一維與二維結構分析
(A Study of One and Two Dimensional Magnetopause Structure)
相關論文
★ 磁流體波於電流片中傳播之研究★ 壓力非均向電漿中霍爾電流對震波形成之效應
★ 撕裂模不穩定性於壓力均向與非均向電漿中之磁流體理論★ 地球磁層頂二維結構之研究
★ 地球磁尾慢速震波之研究★ 慢速震波在壓力非均向電漿中之研究
★ 應用Kappa速度分佈函數所建立之廣義Harris磁場模式★ 靜電場中帶電粒子束不穩定性
★ 救火管不穩定性之磁流體力學理論★ 離子慣性效應對救火管與磁鏡不穩定性之影響
★ 地球磁鞘電漿之熱力狀態★ 微粒電漿中之磁流體波
★ 地球磁層頂二維結構之重建與分析★ 救火管不穩定性之混合粒子碼模擬研究
★ 相對論電漿中之磁流體波與震波★ 沿磁力線救火管不穩定之磁流體數值模擬
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究地球磁層頂一維與二維結構,採用AMPTE/IRM衛星與THEMIS衛星之電漿與磁場資料。一維結構分析採用磁場最小差異量法(Minimum Variance Analysis, MVA)、DeHoffmann-Teller座標分析(HT)、與Walén Relation分析方法,針對328個地球磁層頂穿越事件,檢視MVA與HT分析結果及相關誤差分析,並依據Walén Relation結果判斷其結構為tangential discontinuity (TD) 或 rotational discontinuity (RD)結構。其中142個穿越事件同時具有良好的MVA與HT分析結果,且在良好的TD與RD事件中,不連續面法線方向磁場分量分別平均為4.4nT ( Bn/B=11%)與24nT ( Bn/B=31%)。我們並首次檢驗磁重聯現象(RD)與磁層頂電流片兩側電漿環境之相關性。根據Swisdak et al. [2010]提出之理論,當電流片兩側電漿環境 beta、磁場轉動角度 theta、與電流片特徵長度 L/di (其中di為離子的慣性長度),符合delta_beta<2(L/di)tan(theta/2)條件時可發生磁重聯現象。透過檢測846個磁層頂穿越事件,在 delta-beta 相關性中,有93%的RD以及72%的TD符合可發生磁重聯之條件 ( L/di=1)。此結果顯示,地球磁層頂之電漿環境相當適合於磁重聯現象之發生,而磁重聯可發生於 delta_beta<2.8,且Swa~1 事件僅發生於deta_beta<1 。我們並發展二維Grad-Sharfanov (GS)重建模式,應用於地球磁層頂電流片之穿越事件,結果顯示,TD與RD皆具有相似之單一或多個X-line及磁島結構之磁重聯現象。
摘要(英) A statistic study of one-dimensional (1D) and two-dimensional (2D) structure of Earth’s magnetopause is carried out by analyzing AMPTE/IRM and THEMIS plasma and magnetic field data. The analyses are based on the minimum variance analysis (MVA), the deHoffmann-Teller (HT) frame analysis and the Walén relation. A total of 328 magnetopause crossings are analyzed and error estimates associated with MVA and HT fame analyses. In 142 out of 328 events both MVA and HT frame analyses yield high quality results which are classified as either tangential-discontinuity (TD) or rotational-discontinuity (RD) structures based only on the Walén relation. For high quality events, the average normal magnetic field for TDs and RDs is 4.4nT ( Bn/B=11%) and 24nT ( Bn/B=31%), respectively. We have also examined for the first time the dependence of magnetic reconnection on plasma beta difference, delta_beta , and magnetic field shear angle, theta, across the current sheet based on the theoretical relation of (where L/di is the characteristic length of current sheet in units of ion inertial length) recently proposed by Swisdak et al. [2010] as the necessary condition for the occurrence of magnetic reconnection. The plasma conditions adjacent to Earth’s magnetopause are examined for 846 magnetopause crossing events from AMPTE and THEMIS spacecraft. It is found that 93% of RDs and 72% of TDs fall in the reconnection regime bounded by delta-beta curve. This result implies that the plasma condition of Earth’s magnetopause is in favor for reconnection. While RD events occur only for delta_beta<2.8 and events with Swa~1 occur only for delta_beta<1. Two-dimensional Grad-Shafranov (GS) reconstruction scheme is developed and applied to a large of number of TD and RD events which shows similar reconnection feature with single or multiple X-line accompanied with magnetic islands.
關鍵字(中) ★ 磁層頂
★ 磁重聯
★ 一維結構
★ 二維結構
★ 地球
關鍵字(英) ★ Magnetopause
★ Reconnection
★ 1D structure
★ 2D structure
★ Earth
論文目次 中文摘要 i
英文摘要 ii
目錄 iv
圖目錄 vi
表目錄 x
第一章 緒論 1
第二章 資料分析理論方法
2.1 磁場最小變異量法 – Minimum Variance Analysis 15
2.2 DeHoffmann-Teller參考座標與Walén Relation分析 16
2.3 衛星資料與磁層頂穿越事件選擇標準 18
第三章 磁層頂一維結構分析
3.1 磁層頂位置 26
3.2 地球磁層頂穿越事件分析 27
3.3 一維結構分析統計結果 31
3.4 資料區間選取之影響 34
第四章 磁層頂二維GS重建分析
4.1 二維Static GS重建分析 53
4.2 二維Field-Aligned Flow GS重建分析 56
第五章 地球磁層頂兩側電漿與磁場環境特性分析
5.1 資料區間選取 71
5.2 磁層頂兩側 與磁重聯之相關性 74
第六章 結論 86
參考文獻 90
參考文獻 參考文獻
Berchem, J., and C. T. Russell (1982), Magnetic field rotation through the magnetopause: ISEE 1 and 2 observations, J. Geophys. Res., 87, 8139.
Birn, J. (1991), Stretched three-dimensional plasma equilibria with field-aligned flow, Phys. Fluids B 3, 472.
Bauer, T. M., G. Paschmann, R. A. Treumann, W. Baumjohann, and N. Sckopke (1997), Ion signatures of reconnection at the magnetopause, Adv. Space Res., 19, 1947-1950, doi:10.1016/S0273-1177(97)00107-5.
Borg, A. L., M. Øieroset, T. D. Phan, F. S. Mozer, A. Pedersen, C. Mouikis, J. P. McFadden, C. Twitty, A. Balogh, and H. Rème (2005), Cluster encounter of a magnetic reconnection diffusion region in the near-Earth magnetotail on September 19, 2003, Geophys. Res. Lett., 32, L19105, doi:10.1029/2005GL023794.
Cheng, S. H. (1999), 地球磁層頂旋轉與切線不連續面結構之分析, 碩士論文, 國立中央大學太空科學研究所.
Chen, Y. J. (2011), 利用THEMIS衛星研究磁層頂結構, 碩士論文, 國立中央大學太空科學研究所.
Chou, Y.-C., and L.-N. Hau, (2012), A statistical study of magnetopause structures: Tangential versus rotational discontinuities, J. Geophys. Res., doi:10.1029/2011JA017155
DeHoffmann, F. and Teller, E., Magneto-hydrodynamic shocks (1950), Phys. Rev., 80, 692.
Dungey, J. W. (1961), Interplanetary Magnetic Field and the Auroral Zones, Physical Review Letters, 6(2), 47-48.
Eastman, T. E., S. A. Fuselier, and J. T. Gosling (1996), Magnetopause crossings without a boundary layer, J. Geophys. Res., 101(A1), 49–57, doi:10.1029/95JA02757.
Ferraro, V. V. A. (1960), An approximate method of estimating the size and shape of the stationary hollow carved out in a neutral ionized stream of corpuscles impinging on the geomagnetic field, J. Geophys. Res., 65, 3951-3953.
Fairfield, D. H. (1971), Average and Unusual Locations of the Earth’s Magnetopause and Bow Shock, J. Geophys. Res., 76(28), 6700–6716, doi:10.1029/JA076i028p06700.
Gosling, J. T., M. F. Thomsen, S. J. Bame, R. C. Elphic, and C. T. Russell (1990), Plasma-Flow Reversals at the Dayside Magnetopause and the Origin of Asymmetric Polar-Cap Convection, J. Geophys. Res., 95(A6), 8073-8084.
Gosling, J. T., R. M. Skoug, D. J. McComas, and C. W. Smith (2005), Direct evidence for magnetic reconnection in the solar wind near 1 AU, J. Geophys. Res., 110, A01107, doi:10.1029/2004JA010809.
Gosling, J. T., S. Eriksson, and R. Schwenn (2006), Petschek-type magnetic reconnection exhausts in the solar wind well inside 1 AU: Helios, J. Geophys. Res., 111, A10102, doi:10.1029/2006JA011863.
Gosling, J. T., S. Eriksson, D. J. McComas, T. D. Phan, and R. M. Skoug (2007), Multiple magnetic reconnection sites associated with a coronal mass ejection in the solar wind, J. Geophys. Res., 112, A08106, doi:10.1029/2007JA012418.
Hasegawa, H., B. U. Ö. Sonnerup, M. W. Dunlop, A. Balogh, S. E. Haaland, B. Klecker, G. Paschmann, B. Lavraud, I. Dandouras, and H. Rème (2004), Reconstruction of two-dimensional magnetopause structures from Cluster observations: verification of method, Ann. Geophys., 22, 1251-1266, doi:10.5194/angeo-22-1251-2004.
Hasegawa, H., B. U. Ö. Sonnerup, B. Klecker, G. Paschmann, M. W. Dunlop, and H. Rème (2005), Optimal reconstruction of magnetopause structures from Cluster data, Ann. Geophys., 23, 973-982.
Howe, H. C., Jr., and J. H. Binsack (1972), Explorer 33 and 35 Plasma Observations of Magnetosheath Flow, J. Geophys. Res., 77(19), 3334–3344, doi:10.1029/JA077i019p03334.
Hau, L.-N., and B. U. Ö. Sonnerup (1993), On slow-mode waves in an anisotropic plasma, Geophys. Res. Lett., 20, 1763.
Hau, L.-N. (1996), General formulation and exact solution for two-dimensional field aligned magnetohydrodynamic equilibrium flows, Phys. Plasmas, 3, 1113.
Hau, L.-N., and B. U. Ö. Sonnerup (1999), Two-dimensional coherent structures in the magnetopause: Recovery of static equilibria from single-spacecraft data, J. Geophys. Res., 104(A4), 6899–6917, doi:10.1029/1999JA900002.
Hau, L.-N., and S.-W. Chiou (2001), On the linear and nonlinear resistive tearing-mode instabilities, J. Geophys. Res., 106, 8371–8380, doi:10.1029/2000JA000336.
Hu, Q., and B. U. Ö. Sonnerup (2000), Magnetopause transects from two spacecraft: A comparison, Geophys. Res. Lett., 27, 1443.
Hu, Q., and B. U. Ö. Sonnerup (2001), Reconstruction of magnetic flux ropes in the solar wind, Geophys. Res. Lett., 28, 467– 470.
Hu, Q., and B. U. Ö. Sonnerup (2003), Reconstruction of two-dimensional structures in the magnetopause: Method improvements, J. Geophys. Res., 108(A1), 1011, doi:10.1029/2002JA009323.
Huddleston, D. E., C. T. Russell, G. Le, and A. Szabo (1997), Magnetopause structure and the role of reconnection at the outer planets, J. Geophys. Res., 102(A11), 24,289–24,302, doi:10.1029/97JA02416.
Kawano, H., and T. Higuchi (1995), The bootstrap method in space physics: Error estimation for the minimum variance analysis, Geophys. Res. Lett., 22(3), 307–310, doi:10.1029/94GL02969.
Khrabrov, A. V., and B. U. Ö. Sonnerup (1998), DeHoffmann-Teller analysis, in Analysis Methods for Multi-Spacecraft Data, ISSI Sci. Rep. SR-001, edited by G. Paschmann and P. W. Daly, pp. 221-248, Springer, New York.
Lui, A. T. Y., D. G. Sibeck, T. Phan, J. P. McFadden, V. Angelopoulos, and K.-H. Glassmeier (2008a), Reconstruction of a flux transfer event based on observations from five THEMIS satellites, J. Geophys. Res., 113, A00C01, doi:10.1029/2008JA013189.
Lui, A. T. Y., D. G. Sibeck, T. Phan, V. Angelopoulos, J. McFadden, C. Carlson, D. Larson, J. Bonnell, K.-H. Glassmeier, and S. Frey (2008b), Reconstruction of a magnetic flux rope from THEMIS observations, Geophys. Res. Lett., 35, L17S05, doi:10.1029/2007GL032933.
Lui, A. T. Y. (2011), Grad-Shafranov Reconstruction of Magnetic Flux Ropes in the Near-Earth Space, Space Science Reviews, 158, 1, 43-68.
McAndrews, H. J., C. J. Owen, M. F. Thomsen, B. Lavraud, A. J. Coates, M. K. Dougherty, and D. T. Young (2008), Evidence for reconnection at Saturn’s magnetopause, J. Geophys. Res., 113, A04210, doi:10.1029/2007JA012581.
Masters, A., J. P. Eastwood, M. Swisdak, M. F. Thomsen, C. T. Russell, N. Sergis, F. J. Crary, M. K. Dougherty, A. J. Coates, and S. M. Krimigis (2012), The importance of plasma conditions for magnetic reconnection at Saturn’s magnetopause, Geophys. Res. Lett., 39(8).
Nagai, T., I. Shinohara, M. Fujimoto, M. Hoshino, Y. Saito, S. Machida, and T. Mukai (2001), Geotail observations of the Hall current system: Evidence of magnetic reconnection in the magnetotail, J. Geophys. Res., 106(A11), 25,929–25,949, doi:10.1029/2001JA900038.
Nagai, T. (2006), Location of magnetic reconnection in the magnetotail, Space Sci. Rev., 122, 39-54, doi:10.1007/s11214-006-6216-4.
Neugebauer, M., D. R. Clay, B. E. Goldstein, B. T. Tsurutani, and R. D. Zwickl (1984), A reexamination of rotational and tangential discontinuities in the solar wind, J. Geophys. Res., 89(A7), 5395–5408, doi:10.1029/JA089iA07p05395.
Øieroset, M., T. D. Phan, R. P. Lin, and B. U. Ö. Sonnerup (2000), Walén and variance analyses of high-speed flows observed by Wind in the midtail plasma sheet: Evidence for reconnection, J. Geophys. Res., 105(A11), 25,247–25,263, doi:10.1029/2000JA900075.
Omidi, N., T. Phan, and D. G. Sibeck (2009), Hybrid simulations of magnetic reconnection initiated in the magnetosheath, J. Geophys. Res., 114(A2).
Panov, E. V., J. Büchner, M. Fränz, A. Korth, S. P. Savin, H. Rème, and K.-H. Fornaçon (2008), High-latitude Earth’s magnetopause outside the cusp: Cluster observations, J. Geophys. Res., 113, A01220, doi:10.1029/2006JA012123.
Pang, Y., Y. Lin, X. H. Deng, X. Y. Wang, and B. Tan (2010), Three-dimensional hybrid simulation of magnetosheath reconnection under northward and southward interplanetary magnetic field, J. Geophys. Res., 115(A3).
Paschmann, G., B. U. O. Sonnerup, I. Papamastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, C. T. Russell, and R. C. Elphic (1979), Plasma acceleration at the Earth’s magnetopause: Evidence for reconnection, Nature, 282, 243, doi:10.1038/282243a0.
Paschmann, G., I. Papamastorakis, W. Baumjohann, N. Sckopke, C. W. Carlson, B. U. Ö. Sonnerup, and H. Lühr (1986), The Magnetopause for Large Magnetic Shear: AMPTE/IRM Observations, J. Geophys. Res., 91(A10), 11,099–11,115, doi:10.1029/JA091iA10p11099.
Paschmann, G., W. Baumjohann, N. Sckopke, T. .-D. Phan, and H. Lühr (1993), Structure of the Dayside Magnetopause for Low Magnetic Shear, J. Geophys. Res., 98(A8), 13,409–13,422, doi:10.1029/93JA00646.
Paschmann, G., S. Haaland, B. U. Ö. Sonnerup, H. Hasegawa, E. Georgescu, B. Klecker, T. D. Phan, H. Rème, and A. Vaivads (2005), Characteristics of the near-tail dawn magnetopause and boundary layer, Ann. Geophys., 23, 1481-1497, doi:10.5194/angeo-23-1481-2005.
Phan, T. -D., G. Paschmann, W. Baumjohann, N. Sckopke, and H. Lühr (1994), The Magnetosheath Region Adjacent to the Dayside Magnetopause: AMPTE/IRM Observations, J. Geophys. Res., 99(A1), 121–141, doi:10.1029/93JA02444.
Phan, T. -D., and G. Paschmann (1996), Low-latitude dayside magnetopause and boundary layer for high magnetic shear 1. Structure and motion, J. Geophys. Res., 101(A4), 7801–7815, doi:10.1029/95JA03752.
Phan, T. D., G. Paschmann, and B. U. Ö. Sonnerup (1996), Low-latitude dayside magnetopause and boundary layer for high magnetic shear 2. Occurrence of magnetic reconnection, J. Geophys. Res., 101(A4), 7817–7828, doi:10.1029/95JA03751.
Phan T. D., L. M. Kistler, B. Klecker, G. Haerendel, G. Paschmann, B. U. Ö. Sonnerup, W. Baumjohann, M. B. Bavassano-Cattaneo, C. W. Carlson, A. M. DiLellis, K.-H. Fornacon, L. A. Frank, M. Fujimoto, E. Georgescu, S. Kokubun, E. Moebius, T. Mukai, M. Øieroset, W. R. Paterson & H. Reme, (2000), Extended magnetic reconnection at the Earth’s magnetopause from detection of bi-directional jets, Nature, 404, 848-850.
Phan, T. D., B. U. Ö. Sonnerup, and R. P. Lin (2001), Fluid and kinetics signatures of reconnection at the dawn tail magnetopause: Wind observations, J. Geophys. Res., 106, 25,489–25,501, doi:10.1029/2001JA900054.
Phan, T. D., et al. (2006), A magnetic reconnection X-line extending more than 390 Earth radii in the solar wind, Nature, 439, 175-178, doi:10.1038/nature04393.
Phan, T. D., G. Paschmann, C. Twitty, F. S. Mozer, J. T. Gosling, J. P. Eastwood, M. Øieroset, H. Rème, and E. A. Lucek (2007), Evidence for magnetic reconnection initiated in the magnetosheath, Geophys. Res. Lett., 34, L14104, doi:10.1029/2007GL030343.
Phan, T. D., J. T. Gosling, and M. S. Davis (2009), Prevalence of extended reconnection X-lines in the solar wind at 1 AU, Geophys. Res. Lett., 36, L09108, doi:10.1029/2009GL037713.
Phan, T. D., J. T. Gosling, G. Paschmann, C. Pasma, J. F. Drake, M. Øieroset, D. Larson, R. P. Lin, and M. S. Davis (2010), The Dependence of Magnetic Reconnection on Plasma β and Magnetic Shear: Evidence from Solar Wind Observations, Astrophys J., 719(2), L199-L203.
Phan, T. D., T. E. Love, J. T. Gosling, G. Paschmann, J. P. Eastwood, M. Oieroset, V. Angelopoulos, J. P. McFadden, D. Larson, and U. Auster (2011), Triggering of magnetic reconnection in a magnetosheath current sheet due to compression against the magnetopause, Geophys. Res. Lett., 38, L17101, doi:10.1029/2011GL048586.
Plaschke, F., K.-H. Glassmeier, H. U. Auster, V. Angelopoulos, O. D. Constantinescu, K.-H. Fornaçon, E. Georgescu, W. Magnes, J. P. McFadden, and R. Nakamura (2009), Statistical study of the magnetopause motion: First results from THEMIS, J. Geophys. Res., 114, A00C10, doi:10.1029/2008JA013423.
Scurry, L., C. T. Russell, and J. T. Gosling (1994), A statistical study of accelerated flow events at the dayside magnetopause, J. Geophys. Res., 99(A8), 14,815–14,829, doi:10.1029/94JA00793.
Shue, J.-H., J. K. Chao, H. C. Fu, C. T. Russell, P. Song, K. K. Khurana, and H. J. Singer (1997), A new functional form to study the solar wind control of the magnetopause size and shape, J. Geophys. Res., 102(A5), 9497–9511, doi:10.1029/97JA00196.
Song, P., R. C. Elphic, and C. T. Russell (1988), ISEE 1 & 2 observations of the oscillating magnetopause, Geophys. Res. Lett., 15(8), 744–747, doi:10.1029/GL015i008p00744.
Sonnerup, B. U. Ö., and L. J. Cahill Jr. (1967), Magnetopause structure and attitude from Explorer 12 observations, J. Geophys. Res., 72(1), 171–183, doi:10.1029/JZ072i001p00171.
Sonnerup, B. U. Ö., and B. G. Ledley (1979), Ogo 5 magnetopause structure and classical reconnection, J. Geophys. Res., 84(A2), 399–405, doi:10.1029/JA084iA02p00399.
Sonnerup, B. U. Ö., G. Paschmann, I. Papamastorakis, N. Sckopke, G. Haerendel, S. J. Bame, J. R. Asbridge, J. T. Gosling, and C. T. Russell (1981), Evidence for magnetic field reconnection at the Earth’s magnetopause, J. Geophys. Res., 86(A12), 10,049–10,067, doi:10.1029/JA086iA12p10049.
Sonnerup, B. U. Ö., I. Papamastorakis, G. Paschmann, and H. Lühr (1987), Magnetopause properties from AMPTE/IRM observations of the convection electric field: Method development, J. Geophys. Res., 92(A11), 12,137–12,159, doi:10.1029/JA092iA11p12137.
Sonnerup, B. U., G. Paschmann, and T.-D. Phan (1995), Fluid aspects of reconnection at the magnetopause: In situ observations, in Physics of the Magnetopause, Geophys. Monogr. Ser., vol. 90, edited by P. Song, B. U. Sonnerup, and M. F. Thomsen, pp. 167–180, AGU, Washington, D. C., doi:10.1029/GM090p0167.
Sonnerup, B. U. Ö., and M. Scheible (1998), Minimum and maximum variance analysis, in Analysis Methods for Multi-Spacecraft Data, ISSI Sci. Rep., SR-001, edited by G. Paschmann and P. W. Daly, pp. 185-220, Springer, NewYork.
Sonnerup, B. U. Ö., H. Hasegawa, W.-L. Teh, and L.-N. Hau (2006), Grad-Shafranov reconstruction: An overview, J. Geophys. Res., 111, A09204, doi:10.1029/2006JA011717.
Sonnerup, B. U. Ö., and W.-L. Teh (2008), Reconstruction of two-dimensional coherent MHD structures in a space plasma: The theory, J. Geophys. Res., 113, A05202, doi:10.1029/2007JA012718.
Sonnerup, B. U. Ö., and W.-L., Teh (2009), Reconstruction of two‐dimensional coherent structures in ideal and resistive Hall MHD: The theory, J. Geophys. Res., 114, A04206, doi:10.1029/2008JA013897.
Sibeck, D. G., R. E. Lopez, and E. C. Roelof (1991), Solar wind control of the magnetopause shape, location, and motion, J. Geophys. Res., 96, 5489–5495, doi:10.1029/90JA02464
Swisdak, M., B. N. Rogers, J. F. Drake, M. A. Shay (2003), Diamagnetic suppression of component magnetic reconnection at the magnetopause, J. Geophys. Res., 108(A5).
Swisdak, M., M. Opher, J. F. Drake, and F. Alouani Bibi (2010), The Vector Direction of the Interstellar Magnetic Field Outside the Heliosphere, Astrophys J., 710(2), 1769-1775.
Teh, W.-L. and L.-N. Hau (2004), Evidence for pearl-like magnetic island structures at dawn and dusk side magnetopause, Earth Planets Space, 56, 681-686.
Teh, W.-L. and L.-N. Hau (2007), Triple crossings of a string of magnetic islands at duskside magnetopause encountered by AMPTE/IRM satellite on 8 August 1985, J. Geophys. Res., 112, A08207, doi:10.1029/2007JA012294.
Teh, W.-L., B. U. Ö. Sonnerup, and L.-N. Hau (2007), Grad-Shafranov reconstruction with field-aligned flow: First results, Geophys. Res. Lett., 34, L05109, doi:10.1029/2006GL028802.
Teh, W.-L., B. U. Ö. Sonnerup, G. Paschmann, and S. E. Haaland (2011a), Local structure of directional discontinuities in the solar wind, J. Geophys. Res., 116, A04105, doi:10.1029/2010JA016152.
Teh, W.-L., R. Nakamura, B. U. Ö. Sonnerup, J. P. Eastwood, M. Volwerk, A. N. Fazakerley, and W. Baumjohann (2011b), Evidence of the origin of the Hall magnetic field for reconnection: Hall MHD reconstruction results from Cluster observations, J. Geophys. Res., 116, A11218, doi:10.1029/2011JA016991.
Trenchi, L., M. F. Marcucci, G. Pallocchia, G. Consolini, M. B. Bavassano Cattaneo, A. M. Di Lellis, H. Rème, L. Kistler, C. M. Carr, and J. B. Cao (2008), Occurrence of reconnection jets at the dayside magnetopause: Double Star observations, J. Geophys. Res., 113, A07S10, doi:10.1029/2007JA012774.
Zhang, T. L., Q. M. Lu, W. Baumjohann, C. T. Russell, A. Fedorov, S. Barabash, A. J. Coates, A. M. Du, J. B. Cao, R. Nakamura, W. L. Teh, R. S. Wang, X. K. Dou, S. Wang, K. H. Glassmeier, H. U. Auster, M. Balikhin (2012), Magnetic Reconnection in the Near Venusian Magnetotail, Science, Vol. 336, 567-570, DOI: 10.1126/science.1217013.

指導教授 郝玲妮(Lin-Ni Hau) 審核日期 2012-10-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明