博碩士論文 982204004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:3.145.130.31
姓名 黃珮瑜(Pei-yu Huang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 環狀核苷磷酸二酯酶4對LPS刺激小鼠巨噬細胞產生IP-10之影響
(Effects of Phosphodiesterase 4 on LPS-stimulated IFNγ-induced Protein 10 Production in Mouse Macrophages)
相關論文
★ PDE抑制劑與cAMP訊號傳導對類風濕性關節炎小鼠模型中CD4+ T細胞釋放IFN-g與IL-17A之調控★ PDE4和cAMP訊號傳導於小鼠骨髓細胞分化為樹突細胞之角色
★ 利用斑馬魚研究肝臟疾病和肝癌之發生:B型肝炎病毒X抗原,黃麴毒素,p53突變,src和edn1的致癌作用及其協同效應★ 環狀核苷酸磷酸二酯酶4對LPS/TLR4訊息傳導誘導小鼠巨噬細胞表現IFN-β的影響
★ 抑制環狀核苷酸磷酸二酯酶 3 (PDE3)對 3T3-L1 脂肪細胞內蛋白質表現之影響★ 環狀核苷酸磷酸二酯酶4B對小鼠樹突細胞分化與CXCR4表現之調控
★ 利用聚乙烯亞胺輸送環狀核苷酸磷酸二酯酶4B之專一性反義寡核苷酸可抑制LPS刺激小鼠巨噬細胞釋放TNF-α★ PDE4與PDE3抑制劑對膠原蛋白誘發DBA/1小鼠關節炎及釋放發炎激素IFN-γ與IL-17A的協同調控作用
★ 環狀核苷酸磷酸二酯酶4B對內毒素誘導巨噬細胞 產生IL-1Ra和樹突細胞表現TLRs之影響 及其對乾癬症生成之潛在角色★ 環狀核苷酸磷酸二脂酶4B對內毒素刺激小鼠樹突細胞表現NOD1與CXCR4的影響
★ TDAG8 participates in different phases of neuropathic pain by regulating distinct pathways of substance P★ Innovative Mind-Body Intervention Day Easy Exercise Increases Peripheral Blood CD34+ Cells and Attenuates Back Pain in Adults
★ Viscolin對不同免疫細胞發炎反應的影響★ 環狀腺苷單磷酸與其它訊息傳遞因子對脂肪細胞釋放阻抗素之影響
★ 環狀核苷酸磷酸二酯酶4B對於小鼠T細胞功能之調節★ 巨噬細胞中抑制PDE4對LPS誘導發炎反應之調控
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 趨化激素IFNγ-induced protein 10(IP-10)又稱為CXCL10,可由多種免疫及非免疫細胞所產生,它與許多發炎和自體免疫疾病有關。文獻指出,不同的促發炎介質包括LPS會刺激巨噬細胞釋放IP-10,然而目前對IP-10產生的調控機制還不太清楚。已知在多數發炎細胞中活化cAMP的訊息傳導可有效抑制細胞激素的產生,而分解cAMP的磷酸二酯酶PDE4在發炎細胞中為調控cAMP濃度的主要酵素。因此,本研究主要的目的是想探討在巨噬細胞中PDE4是否參與調控IP-10的產生以及它的作用機制。利用LPS處理Raw 264.7 和小鼠腹腔巨噬細胞,我們發現IP-10的釋放會隨著時間和濃度的增加而上升,而PDE4抑制劑rolipram會有效的抑制IP-10的釋放,其IC50分別約為0.2 μM 和 0.02 μM。同時,Rolipram也會抑制IP-10 mRNA的表現。再者, 以PKA活化劑6-Bnz-cAMP處理巨噬細胞,其LPS刺激IP-10的釋放也會隨著藥劑濃度的增加而下降,然而Epac活化劑8-pCPT-2’-O-Me-cAMP只在高濃度時才有部分抑制作用。此外,PKA inhibitor Rp-8-CPT-cAMPS也會部份回復rolipram對IP-10的抑制作用。由這些結果顯示,rolipram對IP-10的抑制主要是藉由活化cAMP/PKA的路徑所致。我們進一步利用LPS處理PDE4基因剔除小鼠之腹腔巨噬細胞,發現PDE4B-/-細胞釋放IP-10會顯著下降,且其下降程度與rolipram處理PDE4B+/+巨噬細胞相當,同時rolipram不再進一步抑制PDE4B-/-巨噬細胞釋放IP-10。PDE4A-/-與PDE4D-/-細胞其IP-10的反應與PDE4A+/+與PDE4D+/+細胞一致。這些結果證明rolipram對IP-10的抑制作用是由於抑制PDE4B活性所致。另外,利用小鼠脾臟T細胞進行趨化反應,結果顯示IP-10誘導T細胞的移動也會被rolipram抑制。综合以上結果得知,在小鼠巨噬細胞中PDE4B對LPS刺激IP-10的產生與釋放是不可或缺的,且剔除或抑制PDE4B活性會活化cAMP/PKA訊息傳導進而抑制IP-10的反應。
摘要(英) IFNγ-induced protein 10 (IP-10), also known as CXCL10, is a chemokine that can be produced by a variety of immune and non-immune cells during an inflammatory condition, and is associated with several inflammatory disorders. Accumulating evidence indicates that IP-10 is secreted by macrophages in response to various pro-inflammatory mediators, including lipopolysaccharide(LPS). The regulatory mechanism underlying the production of IP-10, however, remains unclear. Activation of cAMP signaling is known to have negatively modulatory effects on cytokine production in most inflammatory cells. Type 4 phosphodiesterases(PDE4), the enzymes responsible for cAMP degradation, play a key role in regulation of cAMP concentration in inflammatory cells. Thus, in this study, we aimed to determine whether and how PDE4 is involved in regulation of IP-10 production in macrophages in response to LPS. By stimulation of Raw 264.7 and mouse peritoneal macrophages with LPS, we observed that the IP-10 release increased in a time- and dose-dependent manner, and the PDE4 inhibitor rolipram effectively suppressed the IP-10 release with the IC50 of approximately 0.2 μM and 0.02 μM, respectively. The inhibition of IP-10 by rolipram was also obtained at the transcriptional level. Additionally, the LPS-induced IP-10 release was does-dependently inhibited by the PKA activator 6-Bnz-cAMP, but less effectively by the Epac activator 8-pCPT-2’-O-Me-cAMP. Moreover, the rolipram-inhibited IP-10 release was partially reversed by the PKA inhibitor Rp-8-CPT-cAMPS. These results indicated that the effect of rolipram on the IP-10 response was primarily mediated by the PKA activation. Using PDE4-deficient peritoneal macrophages treated with LPS, we found that the release of IP-10 in PDE4B-/- macrophages, but not PDE4A-/- or PDE4D-/- macrophages, was significantly decreased, to the level similar to that in the PDE4B+/+ macrophages treated with rolipram. Moreover, rolipram did not further decrease the IP-10 release in PDE4B-/- macrophages. These results demonstrated that the effect of rolipram on the IP-10 release was mediated by inhibition of PDE4B activity. Using mouse splenic T cells in a chemotactic reaction, we found that the IP-10-induced migration of T cells was also attenuated by rolipram. Taken together, these findings demonstrate that PDE4B is essential in the LPS-stimulated IP-10 production in mouse macrophages, and by activation of cAMP/PKA signaling ablation or inhibition of PDE4B can downregulate the IP-10 response.
關鍵字(中) ★ 干擾素γ誘導蛋白-10
★ 環狀核苷酸磷酸二酯酶4
★ 環磷酸腺苷
★ 巨噬細胞
★ T細胞
★ 趨化作用
關鍵字(英) ★ IP-10
★ PDE4
★ cAMP
★ macrophages
★ T cells
★ chemotaxis
論文目次 目錄
中文摘要 i
英文摘要 ii
誌謝 iv
目錄 v
圖目錄 viii
縮寫檢索表 ix
一 緒論 1
1-1 環狀核苷磷酸二酯酶(cyclic nucleotide
phosphodiesterases, PDE) 1
1-2 PDE4家族 2
1-3 Adenosine 3′,5′-cyclic monophosphate(cAMP)與
cAMP
訊息傳導路徑 2
1-4 cAMP與免疫反應 3
1-5 趨化激素(Chemokine) 4
1-6 IFN-γ-inducible protein-10(IP-10) 5
1-7 IP-10、cAMP訊息傳導與巨噬細胞 5
1-8 IP-10與T細胞趨化反應 6
1-9 IP-10與免疫疾病 7
二 研究動機與目的 8
三 材料與方法 9
3-1 材料 9
3-1-1 實驗用小鼠 9
3-1-2 實驗用細胞株 9
3-1-3 實驗藥品 9
3-1-4 趨化反應實驗用品及儀器 10
3-2 方法 10
3-2-1 巨噬細胞之培養及藥物處理 10
3-2-1-1 Raw 264.7細胞株的培養與處理 10
1. Raw 264.7細胞株的培養 10
2. Raw 264.7細胞株的藥物處理 11
3-2-1-2 小鼠腹腔巨噬細胞之收取 11
1. B cell panning培養皿之備製 11
2. 小鼠腹腔巨噬細胞之收取 11
3. 小鼠腹腔巨噬細胞之處理 12
3-2-2 Raw 264.7細胞RNA之萃取 12
3-2-3 即時聚合酶鏈鎖反應(real-time polymerase
chain reaction) 13
1. 反轉錄製作cDNA 13
2. Real-time PCR定量RNA 13
3-2-4 ELISA 14
3-2-5 小鼠脾臟T細胞之培養及處理 14
3-2-5-1 小鼠脾臟T細胞準備 14
3-2-5-2 小鼠脾臟T細胞趨藥性試驗 15
3-2-5-3 Flow cytometry(流式細胞儀)分析 16
四 實驗結果 17
4-1 LPS刺激巨噬細胞釋放趨化激素IP-10 17
4-2 Rolipram對LPS刺激巨噬細胞釋放IP-10的影響 17
4-3 Rolipram對LPS刺激Raw 264.7細胞表現IP-10 mRNA的影
響 18
4-4 在巨噬細胞中增加cAMP可降低LPS對IP-10的釋放 18
4-5 PKA活化劑與Epac活化劑對LPS刺激巨噬細胞釋放IP-10的影
響 19
4-6 PKA抑制劑對LPS刺激巨噬細胞釋放IP-10的影響 20
4-7 剔除PDE4A、PDE4B或PDE4D基因對LPS刺激巨噬細胞釋放IP-
10的影響 20
4-8 Rolipram對IP-10誘導T淋巴細胞趨化反應的影響 21
五 討論 22
5-1 cAMP訊息傳導對LPS刺激巨噬細胞釋放IP-10之影響 22
5-2 PDE4B對LPS刺激小鼠腹腔巨噬細胞產生IP-10之影響 23
5-3 PKA和Epac在免疫細胞扮演的角色 24
5-4 Rolipram抑制IP-10刺激T淋巴球之趨化反應 25
六 圖與圖解 26
參考文獻 38
附圖 46


圖目錄
圖一 不同LPS處理時間對Raw 264.7及小鼠腹腔巨噬細胞釋放IP-
10的影響 26
圖二 不同濃度之LPS對Raw 264.7及小鼠腹腔巨噬細胞釋放IP-10
的影響 27
圖三 不同濃度之Rolipram對LPS刺激Raw 264.7及小鼠腹腔巨噬細
胞釋放IP-10的影響 28
圖四 Rolipram對LPS刺激Raw 264.7細胞表現mRNA的影響 29
圖五 Dibutyryl-cAMP對LPS刺激Raw 264.7及小鼠腹腔巨噬細胞釋
放IP-10的影響 30
圖六 活化PKA對LPS刺激巨噬細胞釋放IP-10的影響 31
圖七 活化Epac對LPS刺激巨噬細胞釋放IP-10的影響 32
圖八 PKA抑制劑對LPS刺激巨噬細胞釋放IP-10的影響 33
圖九 剔除PDE4A、PDE4B或PDE4D對LPS刺激巨噬細胞釋放IP-10的
影響 34
圖十 IP-10吸引小鼠T淋巴細胞之趨化反應 36
圖十一 Rolipram對IP-10誘導T淋巴細胞趨化反應的影響 37
參考文獻 Abrahamsen, H., G. Baillie, et al. (2004). "TCR- and CD28-mediated recruitment of phosphodiesterase 4 to lipid rafts potentiates TCR signaling." J Immunol 173(8): 4847-4858.
Akira, S. and K. Takeda (2004). "Toll-like receptor signalling." Nat Rev Immunol 4(7): 499-511.
Antonelli, A., C. Ferri, et al. (2008). "CXCL10 (alpha) and CCL2 (beta) chemokines in systemic sclerosis--a longitudinal study." Rheumatology (Oxford) 47(1): 45-49.
Ariga, M., B. Neitzert, et al. (2004). "Nonredundant function of phosphodiesterases 4D and 4B in neutrophil recruitment to the site of inflammation." J Immunol 173(12): 7531-7538.
Aronoff, D. M., C. Canetti, et al. (2005). "Cutting edge: macrophage inhibition by cyclic AMP (cAMP): differential roles of protein kinase A and exchange protein directly activated by cAMP-1." J Immunol 174(2): 595-599.
Aronoff, D. M., J. K. Carstens, et al. (2006). "Short communication: differences between macrophages and dendritic cells in the cyclic AMP-dependent regulation of lipopolysaccharide-induced cytokine and chemokine synthesis." J Interferon Cytokine Res 26(11): 827-833.
Beavo, J. A. (1995). "Cyclic nucleotide phosphodiesterases: functional implications of multiple isoforms." Physiol Rev 75(4): 725-748.
Beutler, B. A. (1999). "The role of tumor necrosis factor in health and disease." J Rheumatol Suppl 57: 16-21.

Boorsma, D. M., J. Flier, et al. (1999). "IP-10 mRNA expression in cultured keratinocytes is suppressed by inhibition of protein kinase-C and tyrosine kinase and elevation of cAMP." Cytokine 11(7): 469-475.
Bryn, T., M. Mahic, et al. (2006). "The cyclic AMP-Epac1-Rap1 pathway is dissociated from regulation of effector functions in monocytes but acquires immunoregulatory function in mature macrophages." J Immunol 176(12): 7361-7370.
Campanella, G. S., B. D. Medoff, et al. (2008). "Development of a novel chemokine-mediated in vivo T cell recruitment assay." J Immunol Methods 331(1-2): 127-139.
Campbell, J. D., V. Gangur, et al. (2004). "Allergic humans are hyporesponsive to a CXCR3 ligand-mediated Th1 immunity-promoting loop." FASEB J 18(2): 329-331.
Conti, M. and J. Beavo (2007). "Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling." Annu Rev Biochem 76: 481-511.
Conti, M., G. Nemoz, et al. (1995). "Recent progress in understanding the hormonal regulation of phosphodiesterases." Endocr Rev 16(3): 370-389.
Cosio, M. G. and J. Majo (2002). "Inflammation of the airways and lung parenchyma in COPD: role of T cells." Chest 121(5 Suppl): 160S-165S.
de Rooij, J., F. J. Zwartkruis, et al. (1998). "Epac is a Rap1 guanine-nucleotide-exchange factor directly activated by cyclic AMP." Nature 396(6710): 474-477.
Fan Chung, K. (2006). "Phosphodiesterase inhibitors in airways disease." Eur J Pharmacol 533(1-3): 110-117.
Feferman, T., R. Aricha, et al. (2009). "Suppression of experimental autoimmune myasthenia gravis by inhibiting the signaling between IFN-gamma inducible protein 10 (IP-10) and its receptor CXCR3." J Neuroimmunol 209(1-2): 87-95.


Feng, W., Y. Wang, et al. (2000). "Effects of CTx and 8-bromo-cAMP on LPS-induced gene expression of cytokines in murine peritoneal macrophages." Biochem Biophys Res Commun 269(2): 570-573.
Fine, J. S., H. D. Byrnes, et al. (2001). "Evaluation of signal transduction pathways in chemoattractant-induced human monocyte chemotaxis." Inflammation 25(2): 61-67.
Francis, S. H., I. V. Turko, et al. (2001). "Cyclic nucleotide phosphodiesterases: relating structure and function." Prog Nucleic Acid Res Mol Biol 65: 1-52.
Gomez-Chiarri, M., T. A. Hamilton, et al. (1993). "Expression of IP-10, a lipopolysaccharide- and interferon-gamma-inducible protein, in murine mesangial cells in culture." Am J Pathol 142(2): 433-439.
Hanaoka, R., T. Kasama, et al. (2003). "A novel mechanism for the regulation of IFN-gamma inducible protein-10 expression in rheumatoid arthritis." Arthritis Res Ther 5(2): R74-81.
Han, C., J. Fu, et al. (2010). "Dipyrithione inhibits IFN-gamma-induced JAK/STAT1 signaling pathway activation and IP-10/CXCL10 expression in RAW264.7 cells." Inflamm Res 59(10): 809-816.
Harvath, L., J. D. Robbins, et al. (1991). "cAMP and human neutrophil chemotaxis. Elevation of cAMP differentially affects chemotactic responsiveness." J Immunol 146(1): 224-232.
Hertz, A. L., A. T. Bender, et al. (2009). "Elevated cyclic AMP and PDE4 inhibition induce chemokine expression in human monocyte-derived macrophages." Proc Natl Acad Sci U S A 106(51): 21978-21983.
Hoshino, K., T. Kaisho, et al. (2002). "Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation." Int Immunol 14(10): 1225-1231.


Houslay, M. D., M. Sullivan, et al. (1998). "The multienzyme PDE4 cyclic adenosine monophosphate-specific phosphodiesterase family: intracellular targeting, regulation, and selective inhibition by compounds exerting anti-inflammatory and antidepressant actions." Adv Pharmacol 44: 225-342.
Houslay, M. D., M. Conti, et al. (2011). "The cyclic nucleotides." Handb Exp Pharmacol(204): v-vii.
Newton, P., G. O’Boyle, et al. (2009). "T cell extravasation: demonstration of synergy between activation of CXCR3 and the T cell receptor." Mol Immunol 47(2-3): 485-492.
Iijima, M., Y. E. Huang, et al. (2002). "Temporal and spatial regulation of chemotaxis." Dev Cell 3(4): 469-478.
Iyengar, R. (1996). "Gating by cyclic AMP: expanded role for an old signaling pathway." Science 271(5248): 461-463.
Jin, S. L. and M. Conti (2002). "Induction of the cyclic nucleotide phosphodiesterase PDE4B is essential for LPS-activated TNF-alpha responses." Proc Natl Acad Sci U S A 99(11): 7628-7633.
Jin, S. L., S. L. Ding, et al. (2012). "Phosphodiesterase 4 and its inhibitors in inflammatory diseases." Chang Gung Med J 35(3): 197-210.
Jin, S. L., L. Lan, et al. (2005). "Specific role of phosphodiesterase 4B in lipopolysaccharide-induced signaling in mouse macrophages." J Immunol 175(3): 1523-1531.
Jing, H., J. H. Yen, et al. (2004). "A novel signaling pathway mediates the inhibition of CCL3/4 expression by prostaglandin E2." J Biol Chem 279(53): 55176-55186.
Jinquan, T., C. Jing, et al. (2000). "CXCR3 expression and activation of eosinophils: role of IFN-gamma-inducible protein-10 and monokine induced by IFN-gamma." J Immunol 165(3): 1548-1556.

Katakami, Y., Y. Nakao, et al. (1988). "Regulation of tumour necrosis factor production by mouse peritoneal macrophages: the role of cellular cyclic AMP." Immunology 64(4): 719-724.
Kawai, T., O. Takeuchi, et al. (2001). "Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes." J Immunol 167(10): 5887-5894.
Kopydlowski, K. M., C. A. Salkowski, et al. (1999). "Regulation of macrophage chemokine expression by lipopolysaccharide in vitro and in vivo." J Immunol 163(3): 1537-1544.
Kuroda, E., T. Sugiura, et al. (2001). "Prostaglandin E2 up-regulates macrophage-derived chemokine production but suppresses IFN-inducible protein-10 production by APC." J Immunol 166(3): 1650-1658.
Lee, E. Y., Z. H. Lee, et al. (2009). "CXCL10 and autoimmune diseases." Autoimmun Rev 8(5): 379-383.
Liu, M., S. Guo, et al. (2011). "CXCL10/IP-10 in infectious diseases pathogenesis and potential therapeutic implications." Cytokine Growth Factor Rev 22(3): 121-130.
Loos, T., L. Dekeyzer, et al. (2006). "TLR ligands and cytokines induce CXCR3 ligands in endothelial cells: enhanced CXCL9 in autoimmune arthritis." Lab Invest 86(9): 902-916.
Luft, T., E. Maraskovsky, et al. (2004). "Tuning the volume of the immune response: strength and persistence of stimulation determine migration and cytokine secretion of dendritic cells." Blood 104(4): 1066-1074.
Lugnier, C. (2006). "Cyclic nucleotide phosphodiesterase (PDE) superfamily: a new target for the development of specific therapeutic agents." Pharmacol Ther 109(3): 366-398.
Manganiello, V. (2002). "Short-term regulation of PDE4 activity." Br J Pharmacol 136(3): 339-340.

Meng, F. and C. A. Lowell (1997). "Lipopolysaccharide (LPS)-induced macrophage activation and signal transduction in the absence of Src-family kinases Hck, Fgr, and Lyn." J Exp Med 185(9): 1661-1670.
Narumi, S., T. Takeuchi, et al. (2000). "Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus." Cytokine 12(10): 1561-1565.
O’Donnell, J. M. and H. T. Zhang (2004). "Antidepressant effects of inhibitors of cAMP phosphodiesterase (PDE4)." Trends Pharmacol Sci 25(3): 158-163.
Oghumu, S., C. M. Lezama-Davila, et al. (2010). "Role of chemokines in regulation of immunity against leishmaniasis." Exp Parasitol 126(3): 389-396.
Omori, K. and J. Kotera (2007). "Overview of PDEs and their regulation." Circ Res 100(3): 309-327.
Page, C. P. and D. Spina (2011). "Phosphodiesterase inhibitors in the treatment of inflammatory diseases." Handb Exp Pharmacol(204): 391-414.
Page, C. P. and D. Spina (2012). "Selective PDE inhibitors as novel treatments for respiratory diseases." Curr Opin Pharmacol 12(3): 275-286.
Patel, D. D., J. P. Zachariah, et al. (2001). "CXCR3 and CCR5 ligands in rheumatoid arthritis synovium." Clin Immunol 98(1): 39-45.
Romagnani, S. (2006). "Regulation of the T cell response." Clin Exp Allergy 36(11): 1357-1366.
Romagnani, P. and C. Crescioli (2012). "CXCL10: a candidate biomarker in transplantation." Clin Chim Acta 413(17-18): 1364-1373.
Rotondi, M., L. Chiovato, et al. (2007). "Role of chemokines in endocrine autoimmune diseases." Endocr Rev 28(5): 492-520.
Schafer, P. H., A. Parton, et al. (2010). "Apremilast, a cAMP phosphodiesterase-4 inhibitor, demonstrates anti-inflammatory activity in vitro and in a model of psoriasis." Br J Pharmacol 159(4): 842-855.
Selvarajoo, K., Y. Takada, et al. (2008). "Signaling flux redistribution at toll-like receptor pathway junctions." PLoS One 3(10): e3430.
Serezani, C. H., M. N. Ballinger, et al. (2008). "Cyclic AMP: master regulator of innate immune cell function." Am J Respir Cell Mol Biol 39(2): 127-132.
Shahabuddin, S., R. Ji, et al. (2006). "CXCR3 chemokine receptor-induced chemotaxis in human airway epithelial cells: role of p38 MAPK and PI3K signaling pathways." Am J Physiol Cell Physiol 291(1): C34-39.
Shen, Q., R. Zhang, et al. (2006). "MAP kinase regulation of IP10/CXCL10 chemokine gene expression in microglial cells." Brain Res 1086(1): 9-16.
Shirshev, S. V. (2011). "Role of Epac proteins in mechanisms of cAMP-dependent immunoregulation." Biochemistry (Mosc) 76(9): 981-998.
Sinha, B., J. Semmler, et al. (1995). "Enhanced tumor necrosis factor suppression and cyclic adenosine monophosphate accumulation by combination of phosphodiesterase inhibitors and prostanoids." Eur J Immunol 25(1): 147-153.
Souness, J. E., D. Aldous, et al. (2000). "Immunosuppressive and anti-inflammatory effects of cyclic AMP phosphodiesterase (PDE) type 4 inhibitors." Immunopharmacology 47(2-3): 127-162.
Tassiulas, I., K. H. Park-Min, et al. (2007). "Apoptotic cells inhibit LPS-induced cytokine and chemokine production and IFN responses in macrophages." Hum Immunol 68(3): 156-164.
Tasken, K. and E. M. Aandahl (2004). "Localized effects of cAMP mediated by distinct routes of protein kinase A." Physiol Rev 84(1): 137-167.
Torgersen, K. M., T. Vang, et al. (2002). "Molecular mechanisms for protein kinase A-mediated modulation of immune function." Cell Signal 14(1): 1-9.


Wedderburn, L. R., N. Robinson, et al. (2000). "Selective recruitment of polarized T cells expressing CCR5 and CXCR3 to the inflamed joints of children with juvenile idiopathic arthritis." Arthritis Rheum 43(4): 765-774.
Valledor, A. F., E. Sanchez-Tillo, et al. (2008). "Selective roles of MAPKs during the macrophage response to IFN-gamma." J Immunol 180(7): 4523-4529.
Villatoro-Hernandez, J., A. Y. Arce-Mendoza, et al. (2009). "Murine interferon-gamma inducible protein-10 (IP-10) secreted by Lactococcus lactis chemo-attracts human CD3+ lymphocytes." Biotechnol Lett 31(11): 1795-1800.
Xu, X. J., J. S. Reichner, et al. (2008). "Prostaglandin E2 suppresses lipopolysaccharide-stimulated IFN-beta production." J Immunol 180(4): 2125-2131.
Yang, J. and A. Richmond (2004). "The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan." Mol Ther 9(6): 846-855.
指導教授 金秀蓮(Shiow-lian Jin) 審核日期 2012-10-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明