博碩士論文 992206009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.144.102.237
姓名 鄭宇翔(Yu-Hsiang Cheng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 圓盤全像之光開關研究與複製製程開發
(Study of optical switching and development of replication process for disk-type hologram)
相關論文
★ 成像面圓盤型複合全像術研究★ 成像面圓錐型複合全像之特性分析
★ 子波列轉換在光學圖形識別的應用★ 氮化鎵微光學元件之研究
★ 二維雙輸入雙輸出光子晶體分光器★ 可環繞觀賞之成像面圓盤型複合全像術
★ 矽光波導元件光耗損研究★ 矽晶片波導元件研究
★ 砷化鎵光子晶體共振腔研究★ 應用奈米小球製作之波導模態共振器
★ 光子晶體異常折射之能流研究★ 氮化鎵光子晶體共振腔
★ 分析BATC大視野多色巡天計畫中正常星系的質光比★ 成像面圓盤型全像複製品之影像模糊分析
★ 成像面圓盤型複合全像術之虛實像設計★ 可環繞觀賞之傳統圓盤型複合全像片
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 從1948 D. Gabor 發明全像術後,全像術已有相當廣泛的發展。其中,圓盤全像片發展至今已經相當純熟,可以重建多色的影像,在觀賞視窗方面也做了大幅度的改善。但是這些圓盤全像片目前還是得利用雷射光複製,還無法利用壓模技術將它量產,本研究證實了將圓盤全像片製作在光阻上的可行性。
本論文利用光阻當作全像資訊的記錄材料,實驗主要分為兩部份。第一部份,我們以雙光束夾角20o記錄全像光柵,過程中測試了顯影時間與光柵深度之關係,發現在顯影40秒時光柵深度最深有1.2m,而在顯影時間為20秒時反而有最佳繞射效率31.1%。之後將光柵製作成液晶盒,且在玻璃基板上作配向處理,以毛細現象吸入E7液晶,外加電壓後可調變繞射效率,繞射效率調變幅度最好的情況可由3.5%調變至7%。
論文之第二部份利用第一部份的經驗將圓盤型複合全像片複製到光阻上。一般而言,光阻材料常被使用於「壓印式全像」產品的「母板」製作,然而由於光阻所需的曝光量遠大過鹵化銀材料,因此若以光阻材料直接重覆曝光記錄複合全像資訊,將受耗費時間、容易被環境擾動等因素所影響,導致成功率降低。我們先利用Slavich公司製造的PFG-03C全像底片製作複合式圓盤母片(H1),並且利用單束光複製系統將其拷貝到全像底片H2上以提高繞射效率,最後再將全像片H2之資訊複製到光阻上。我們利用此三步驟的製作方式將圓盤全像片複製到光阻底片上,得到在光阻底片上的顯影深度最深可達到500nm。
摘要(英) Holography was invented by D. Gabor in 1948. The disk-type multiplex holography is a somewhat mature technology which can reconstruct chromatic images with improved viewing window. However, the laser has to be used to replicate image of object for the disk-type multiplex holography. In this study, we demonstrated the feasibility of disk-type multiplex holography duplicated in photoresist film.
In this thesis, we first use two-beam interference to record holographic grating in the photoresist. The angle of the two beams is set as 20 degrees. We characterize the relationship of the development time and the depth of the gratings. The grating depth of 1.2m can be achieved for the developing time of 40 seconds. The best diffraction efficiency higher than 30% can be obtained at developing time of 20 seconds. Additionally, in order to fabricate the liquid crystal cell to tune the diffraction efficiency of the hologram, we cover another rubbed glass on the grating. The liquid crystal E7 is then infiltrated into the cell by capillarity. By changing the applied voltage to rotate the liquid crystal, the refractive index of liquid crystal can be changed to improve the diffraction efficiency from 3.5% to 7%.
The photoresist are often used in production of master plates for embossed holograms. However, the required exposure time for gratings in photoresist is much longer than that for a silver halide film which is often used for multiplex hologram fabrication. Therefore, we use the Slavich PFG-03C holographic film to record a master hologram (H1). A single-beam system is then used to copy the information from the master hologram (H1) onto the transfer hologram (H2). The diffraction efficiency of the transfer hologram can be enhanced since it is a single-exposure process. Finally, we copy the information from the transfer hologram (H2) by the single-beam system on the photoresist film. The process to copy the disk-type multiplex hologram in photoresist is successfully demonstrated. The highest depth of the gratings is up to around 500 nm.
關鍵字(中) ★ 圓盤全像
★ 光開關
★ 液晶
★ 光阻
關鍵字(英) ★ Disk-type hologram
★ Optical switching
★ Liquid crystal
★ Photoresist
論文目次 摘要 I
Abstract III
致謝 IV
目錄 VI
圖目錄 X
表目錄 XIV
第一章 緒論 1
1.1 前言 1
1.2 全像術之記錄介質 2
1.3 全像術與液晶的應用 4
1.4 本章結論與研究動機 5
第二章 基本原理 8
2.1 全像術(Holography)簡介 8
2.1.1 波前的記錄與重建 8
2.1.2 全像光柵的分類 10
2.2 液晶介紹與起源 13
2.2.1 液晶的定義 13
2.2.2 液晶的種類 14
2.2.3 液晶的光學特性 17
2.2.4 液晶的介電特性 20
2.3 嚴格耦合波基本原理 21
2.4 本章結論 25
第三章 光阻光柵製作與液晶調控 27
3.1 實驗材料與樣品製作 27
3.1.1 材料介紹 27
3.1.2 樣品製作 28
3.2 波長與光阻選擇 28
3.3 雙光束干涉實驗 33
3.3.1 平面波干涉之光學架構 33
3.3.2 光阻光柵顯影深度與繞射效率關係 34
3.4光阻光柵電調控之繞射效率 37
3.4.1 液晶盒(LC cell)製作 37
3.4.2 光阻光柵深度對電壓調控繞射效率之影響 38
3.4.3 間隙子(Spacer)尺寸對電壓調控繞射效率之影響 39
3.4.4 液晶配向(Rubbing)對電壓調控繞射效率之影響 40
3.5 本章結論 42
第四章 圓盤型全像片製作與複製 44
4.1 雙光束干涉實驗 44
4.1.1 平面波干涉之光學架構 44
4.1.2 光阻光柵顯影深度與繞射效率關係 45
4.2 光阻光柵之模擬與分析 48
4.2.1 實驗樣品參數與模擬參數比較 48
4.2.2 模擬結果與探討 49
4.3複合全像片和複製片之關係與設計 52
4.4 複合全像片製作 53
4.4.1 光學架構 53
4.4.2 物光參數設定 55
4.5 單束光複製圓盤全像片 57
4.5.1 複製母片(H1)製作子片(H2) 57
4.6 光阻圓盤之實驗結果與討論 59
4.7 本章結論 64
第五章 總結與未來工作 67
5.1 總結 67
5.2 未來工作 69
參考文獻 70

參考文獻 [1] D. Gabor, “A new microscopic principle,” Nature 161, 777 (1948).
[2] E. N. Leith and J. Upatnieks, “Reconstructed wavefronts and communication theory,” J. Opt. Soc. Am. 52, 1123 (1962).
[3] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with continuous-tone objects,” J. Opt. Soc. Am. 53, 1377 (1963).
[4] E. N. Leith and J. Upatnieks, “Wavefront reconstruction with diffused illumination and three-dimensional objects,” J. Opt. Soc. Am. 54, 1295 (1964).
[5] S. A. Benton, “Hologram reconstructions with extended light sources,” J. Opt. Soc. Am. 59, 1545 (1969).
[6] J. T. McCrickerd and N. George, “Holographic Stereogram from Sequential Component Photographs,” Appl. Phys. Lett. 12, 10 (1968).
[7] D. J. De Bitetto, “Bandwidth reduction of hologram transmission system by elimination of vertical parallax,” Appl. Phys. Lett. 12, 176 (1968).
[8] R. D. Bahuguna and F. Mendoza-Santoyo, “Simple rainbow-holographic techniques for two-dimensional transparencies,” Opt. Lett. 9, 381 (1984).
[9] E. N. Leith and H. Chen, “Deep-image rainbow holograms,” Opt. Lett. 2, 82 (1978).
[10] R. V. Pole, “3-D imagery and holograms of objects illuminated in white light,” Appl. Phys. Lett. 10, 20 (1967).
[11] M. Yamaguchi, H. Endoh, T. Honda, and N. Ohyama, “High-quality recording of a full-parallax holographic stereograms with a digital diffuser,” Opt. Lett. 19, 135 (1994).
[12] M. Yamaguchi, N. Ohyama, and T. Honda, “Holographic three-dimensional printer: new method,” Appl. Opt. 31, 217 (1992).
[13] M. Yamaguhi, H. Sugiura, T. Honda, and N. Ohyama, “Automatic recording method for holographic three-dimensional animation,” J. Opt. Soc. Am. 9, 1200 (1992).
[14] D. J. DeBitetto, “Holographic panoramic stereograms synthesized from white light recordings,” Appl. Opt. 8, 1740 (1969).
[15] D. J. DeBitetto, “Transmission bandwidth reduction of holographic stereograms recorded in white light,” Appl. Phys. Lett. 12, 343 (1968).
[16] L. Huff and R. L. Fusek, “Color holographic stereograms,” Opt. Eng. 19, 691 (1980).
[17] E. N. Leith and P. Voulgaris, “Multiplex holography: some new methods,” Opt. Eng. 24, 171 (1985).
[18] G. Saxby, “Practical Holography, 2nd ed.”, (Prentice-Hall, Englewood Cliffs, N.J,1994), p.308.
[19] S. A. Benton, “Alcove holograms for computer-aided design,” in True Three-Dimensional Imaging Techniques and Display Technologies, D. F. McAllister and W. E. Robbins (eds.), Proc. SPIE 761, 53 (1987).
[20] N. D. Haig, “Three-dimensional holograms by rotational multiplexing of two-dimensional films,” Appl. Opt. 12, 419 (1973).
[21] J. Upatnieks, “Edge-illuminated holograms,” Appl. Opt. 31, 1048 (1992).
[22] K. Okada, S. Yoshii, Y. Yamaji, J. Tsujiuchi and T. Ose, “Conical holographic stereograms,” Opt. Commun. 73, 347 (1989).
[23] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsujiuchi, “Color conical holographic stereogram,” Opt. Eng. 34, 814 (1995).
[24] L. M. Murillo-Mora, K. Okada, T. Honda, and J. Tsuijiuchi, “Distortion compensation and perspective correction method for a conical holographic stereogram,” Opt. Eng. 36, 1706 (1997).
[25] Y. S. Cheng, S. Y. Chen, and R. C. Chang, “Distortion correction for conical multiplex holography using direct object-image relationship,” Proc. Natl. Sci. (2001).
[26] Y. S. Cheng, W. H. Su, and R. C. Chang, “Disk-type multiplex holography,” Appl. Opt. 38, 3093 (1999).
[27] T. A. Shankoff, “Phase Holograms in Dichromated Gelatin,” Appl. Opt. 7, 2101 (1968).
[28] K. S. Pennington, J. S. Harper, and F. P. Laming, “New Phototechnology Suitable for Recording Phase Holograms and Similar Information in Hardened Gelatin,” Appl. Phys. Lett. 18, 82 (1971).
[29] S. Shibata, O. Sugihara, T. Kaino, N. Okamoto, “Fabrication of High Resolution Gratings for Polymeric Optical Waveguide Devices”, Proc. SPIE 5351, 127 (2004).
[30] D. Sawaki, and J. Amako, “Subwavelength photoresist patterning using liquid-immersion interference exposure with a deep-UV hologram mask”, Proc. SPIE 7202, 72020L-1 (2009).
[31] D. Churchill, J. V. Cartmell. “Radiation sensitive display device containing encapsulated cholesteric liquid crystals,” US Patent 3,578,844, (1971).
[32] J. L. Fergason, “Encapsulated liquid crystal and method,” US Patent 4,435,047, (1984).
[33] R. L. Sutherland, L. V. Natarajan, V. P. Tondiglia, and T. J. Bunning, “Bragg Gratings in an AcrylatePolymer Consisting of Periodic Polymer-Dispersed Liquid-Crystal Planes,” Chem. Mater. 5, 1533 (1993).
[34] K. Tanaka, K. Kato, M. Date, “Fabrication of holographic polymer dispersed liquid crystal (HPDLC) with high reflection efficiency,” Jpn. J. Appl. Phys. 38, 277 (1999).
[35] 陳志宏, “產生實像之成像面圓盤型複合全像做片製作與複製研究, ” 國立中央大學光電科學研究所博士論文 (2005).
[36] R. J. Colliier, C. B. Burckhardt, L. H. Lin, “Optical Holography,” (New York: Academic Press ,1971).
[37] P. Y. Amnon Yariv, “Optical Waves in crystals,” (John Wiley & Son, 1984)
[38] P. J. Collings, and M. Hird, “Introduction to liquid crystals- Chemistry and Physics, ” (Taylor & Francis, 1997)
[39] D. J.R. Cristaldi, S. Pennisi, F. Pulvirenti, “Liquid Crystal Display Drivers: Techniques and Circuits.” (Springer,2009)
[40] 田民波, “TFT液晶顯示原理與技術,”五南圖書出版股份有限公司, (2008)
[41] M. G. Moharam, Eric B. Grann, Drew A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings”, J. Opt. Soc. Am. A, 12(5), 1068-1076, 1995.
[42] 張高德, “廣義光子晶體元件之研究與分析,” 國立中央大學光電科學研究所博士論文 (2007).
[43] J. T. LaMacchia, and C. J. Vincelette, “Comparison of the Diffraction Efficiency of Multiple Exposure and Single Exposure Holograms”, Appl. Opt. 7, 1857 (1968).
[44] 林詩珩, “可環繞觀賞之傳統圓盤型複合全像術, ” 國立中央大學光電科學研究所碩士論文 (2004)
[45] Ts. Petrova, B. Ivanov, K. Zdravkov, D. Nazarova, E. Stoykova, G. Minchev, and V. Sainov, “Basic Holographic Characteristics of a Panchromatic Light SensitiveMaterial for Reflective Autostereoscopic 3D Display”, EURASIP J. Adv. Signal Process. 2009.

[46] 蔡宗霖, “可環繞觀賞全像圓盤子片之繞射效率均勻性研究, ” 國立中央大學光電科學研究所碩士論文 (2011).
指導教授 陳啟昌、鄭益祥
(Chii -Chang Chen、Yih-Shyang Cheng)
審核日期 2012-10-15
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明