博碩士論文 993203050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:18.188.38.252
姓名 陳鈺培(Yu-Pei Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱傳增強對儲氫容器金屬氫化物吸放氫的影響
相關論文
★ 溫度調變對二元合金固液介面形態穩定的影響★ 濃度調變對二元合金固液介面形態穩定的影響
★ 圓錐平板型生物反應器週期性流場研究★ 圓錐平板型生物反應器二次週期流場研究
★ 圓錐平板型生物反應器脈動式流場研究★ 濃度調變對單向固化形態穩定的影響
★ 圓錐平板型生物反應器脈動式二次流場研究★ 模擬注流式生物反應器之流場及細胞生長
★ 週期式圓錐平板裝置之設計與量測★ 模擬注流式生物反應器之細胞培養研究
★ 軟骨細胞在組織工程支架之培養研究★ 細胞在組織工程支架之生長與遷移
★ 冷電漿沉積類鑽碳膜之製程模擬分析★ 格狀自動機探討組織工程細胞體外培養研究
★ 細胞在注流式生物反應器之生長研究★ 週期式圓錐平板裝置之流場分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本文針對裝填鑭鎳合金(LaNi5)之儲氫罐進行數值模擬,並且分析儲氫罐在吸放氫過程中的熱流特性。儲氫罐內分成兩個區域,分別為上層膨脹區以及下層合金區,膨脹區為預留合金膨脹所需的空間。由於合金在吸氫時會產生熱量,放氫時則需提供熱量,因此藉由能量方程式添加熱源項來描述此機制。氫氣和合金在反應過程中質量的增減則利用連續方程式來描述。膨脹區以及合金區的流動的現象分別使用那維爾-史托克斯方程式( Navier-Stokes equation )和佛許海默-布里克曼方程式(Forchheimer-Brinkman equation)來描述。上述方程式配合適當的邊界以及初始條件,利用ANSYS Fluent 12.0此套裝軟體完成本研究的數值計算。
從模擬結果可知,罐體內壁面處能快速與外界進行熱交換,故吸放氫的反應速率較快。本文亦模擬了添加熱管以及鰭片之熱傳增強型罐體,結果顯示在熱管以及鰭片周圍的熱傳性能較佳,故吸放氫速率能有效提升。
本文藉由改變環境條件以分析各種參數對於吸放氫反應的影響。由模擬計算結果可知:
對吸氫反應而言,降低環境溫度以及提升供氫壓力可加快吸氫反應速率;改變鰭片材料對於吸氫反應影響有限;不同的熱管熱傳極限吸氫速率亦不同,但隨著熱傳極限的增加,其對吸氫速率的影響將逐漸變小;而改變不同熱管熱阻值對於吸氫速率則影響不大。
對放氫反應而言,提高環境溫度以及降低出口壓力可加快放氫反應速率;改變鰭片材料對於放氫反應影響亦有限;由於在放氫反應時罐內熱傳量較小,故改變熱傳極限以及熱管熱阻值對放氫反應的影響皆不明顯。

摘要(英) This study presents a numerical simulation for hydrogen absorption and desorption processes using LaNi5. The hydrogen storage canister is assumed to comprise two physical domains, which include an expansion volume region atop a alloy bed. The expansion volume provides the spare space which allow for alloy to expand during the absorption processes. Energy equations are used to describe the temperature changes in the alloy bed induced by the heat release during the hydriding processes and heat absorption during the dehydriding processes. The continuity equations are used to describe the mass balance between the alloy and hydrogen. The Brinkman-Forchheimer and Navier-Stokes equations are used to describe the gas flow within the porous alloy bed and expansion volume, respectively. The mathematical model developed is solved using ANSYS Fluent 12.0.
Results of simulation show that both absorption and desorption rates are higher in the alloy regions close to the finned heat pipe and the tank wall. Parametric analyses are also performed on the absorption rates and desorption rates. Results show that for the absorption process, the absorption rates are larger for lower environmental temperature and higher supply pressure. Inversely for the desorption process, the desorption rates are larger for higher environmental temperature and lower outlet pressure. The effects of the fin conductivity are negligible for both absorption and desorption processes. For the absorption process, the higher the heat pipe power limit, the faster the absorption rates. However, changing heat pipe power limit has little impact on the desorption rates because of the relatively mild desorption process. Results also show that the resistance of heat pipes is typically low that changing the heat pipe resistance only has little impact on both the hydrogen absorption and desorption rates.
關鍵字(中) ★ 熱管
★ 儲氫容器
★ 吸氫
★ 放氫
關鍵字(英) ★ heat pipe
★ storage canister
★ absorption
★ desorption
論文目次 摘要 ……………………………………………Ⅰ
Abstract …………………………………… Ⅱ
誌謝 ………………………………………… Ⅲ
目錄 ………………………………………… Ⅳ
表目錄 ……………………………………… Ⅷ
圖目錄 ……………………………………… Ⅸ
符號說明 …………………………………… XV
第一章 緒論 ……………………………… 1
1.1 前言 …………………………… 1
1.2 儲氫技術 ………………………… 2
1.3 儲氫合金 ……………………… 4
1.3.1 儲氫合金發展歷史 ……………… 4
1.3.2 儲氫合金介紹 …………………… 4
1.3.3 儲氫合金吸放氫原理 …………… 5
1.3.4 P-C-I曲線 …………………… 6
1.4 文獻回顧 ……………………… 7
1.5 研究動機 ……………………… 9
第二章 物理系統與數學模型 …………… 12
2.1 物理系統 ………………………… 12
2.2 儲氫罐幾何外型 …………………… 12
2.3 膨脹區數學模型 ……………………… 13
2.3.1 連續方程式 ……………………… 14
2.3.2 動量方程式 ……………………… 14
2.3.3 能量方程式 ……………………… 14
2.4 多孔性介質合金區數學模型 ………… 15
2.4.1 連續方程式 ……………………… 15
2.4.2 動量方程式 ……………………… 16
2.4.3 能量方程式 ……………………… 16
2.5 鰭片與熱管套筒數學模型 …………… 17
2.6 合金吸放氫動力學 ……………… 17
2.6.1 合金吸放氫速率 ………………… 17
2.6.2 合金吸放氫平衡壓力 …………… 18
2.7 初始條件與邊界條件 …………… 21
2.7.1 初始條件 …………………………… 21
2.7.2 吸放氫模型邊界條件 ……………… 22
2.8 數值方法 ………………………………… 26
2.8.1 ANSYS Fluent 12.0 …………… 26
2.8.2 使用者自定義函式 …………………… 26
2.8.3 網格配置 ……………………………… 27
2.8.4 收斂條件設定 ………………………… 27
第三章 儲氫容器熱流特性 …………………… 37
3.1 吸氫模型驗證 …………………………… 37
3.1.1 整體含氫量隨時間變化 ……………… 37
3.1.2 罐內壓力隨時間變化 ………………… 38
3.1.3 合金溫度隨時間變化 ………………… 38
3.2 放氫模型驗證 …………………………… 39
3.2.1 整體含氫量隨時間變化 ……………… 39
3.2.2 罐內壓力隨時間變化 ………………… 39
3.2.3 合金溫度隨時間變化 ………………… 40
3.3 吸氫反應過程探討 ……………………… 41
3.3.1 合金均勻吸氫期 ……………………… 41
3.3.2 合金低熱阻區吸氫期 ………………… 42
3.3.3 合金高熱阻區吸氫期 ………………… 42
3.4 放氫反應過程探討 ……………………… 43
3.4.1 合金均勻放氫期 ……………………… 43
3.4.2 合金低熱阻區吸氫期 ………………… 43
3.4.3 合金高熱阻區吸氫期 ………………… 44
3.5 改變環境溫度對吸放氫反應的影響 …… 44
3.5.1 環境溫度對吸氫反應的影響 ………… 45
3.5.2 環境溫度對放氫反應的影響 ………… 45
3.6 改變壓力對吸放氫反應的影響 ………… 46
3.6.1 供氫壓力對吸氫反應的影響 ………… 47
3.6.2 出口壓力對放氫反應的影響 ………… 47
3.7 鰭片材料對儲氫罐吸放氫反應的影響 … 48
3.8 熱管參數對吸放氫反應的影響 ………… 49
3.8.1 熱傳極限對吸放氫反應的影響 ……… 49
3.8.2 熱管熱阻值對吸放氫反應的影響 …… 50
第四章 不同儲氫容器熱傳性能的比較 ……… 80
4.1 不同罐體吸氫反應過程探討 …………… 80
4.1.1 合金均勻吸氫期 ……………………… 80
4.1.2 合金低熱阻區吸氫期 ………………… 81
4.1.3 合金高熱阻區吸氫期 ………………… 82
4.2 不同罐體放氫反應過程探討 …………… 83
4.2.1 合金均勻放氫期 ……………………… 83
4.2.2 低熱阻區放氫期 ……………………… 84
4.2.3 高熱阻區放氫期 ……………………… 85
4.3 不同罐體在不同溫度下對吸氫反應的影響 85
4.3.1 環境溫度為293K時對吸氫反應的影響 86
4.3.2 環境溫度為303K時對吸氫反應的影響 86
4.3.3 環境溫度為313K時對吸氫反應的影響 86
4.4 不同罐體在不同溫度下對放氫反應的影響 87
4.4.1環境溫度為323K時對放氫反應的影響 87
4.4.2環境溫度為293K時對放氫反應的影響 87
4.4.3環境溫度為273K時對放氫反應的影響 87
4.5 不同罐體在不同供氫壓力下對吸氫反應的影響 88
4.5.1 供氫壓力為20 atm時對吸氫反應的影響 88
4.5.2 供氫壓力為10 atm時對吸氫反應的影響 … 89
4.5.3 供氫壓力為 5 atm時對吸氫反應的影響 … 89
4.6 不同罐體在不同出口壓力下對放氫反應的影響 89
4.6.1 出口壓力為 5 atm時對放氫反應的影響 … 89
4.6.2 出口壓力為10 atm時對放氫反應的影響 … 90
第五章 結論與未來展望 ……………………… 123
5.1 結論 …………………………………………… 123
5.2 未來展望 ………………………………………… 124
參考文獻 …………………………………………… 125
附錄 Fluent UDF code …………………………… 129
參考文獻 Alazmi, B. and Vafai, K., “Analysis of variants within the porous media transport models,” Journal of Heat Transfer 122 (2000) 303-326.
Aldas, K., Mat, D. and Kaplan, Y., “A three-dimensional mathematical model for absorption a metal hydride bed,” International Journal of Hydrogen Energy 27(2002) 1063-1069.
Askri, F., Salah, M. B., Jemni, A. and Nasrallah, S. B., “Optimization of hydrogen storage in metal-hydride tanks,” International Journal of Hydrogen Energy 34(2009) 897-905.
Botzung, M., Chaudourne, S., Gillia, O., Perret, C., Latroche, M., Percheron-Guega,A. and Marty,P., “Simulation and experimental validation of a hydrogen storage tank with metal hydrides,” International Journal of Hydrogen Energy 33 (2008)98-104.
Chung, C. A. and Ho, C. J., “Thermal-fluid behavior of the hydriding and dehydriding process in a metal hydrogen storage canister,” International Journal of Hydrogen Energy 34 (2009) 4351-4364.
Chung, C. A. and Lin, Ci-Siang, “Prediction of hydrogen desorption performance of Mg2Ni hydride reactors,” International Journal of Hydrogen Energy 34 (2009) 9409-9423.
Dhaou et al., “Measurement and modeling of kinetics of hydrogen sorption by LaNi5 and two related pseudobinary compounds,” International Journal of Hydrogen Energy 32 (2007) 576-587.
Freni, A., Cipiti, F. and Cacciola, G., “Finite element-based simulation of a metal hydride-based hydrogen storage tank,” International Journal of Hydrogen Energy 34 (2009) 8574-8582.
Ha, M. Y., Kim, In Kyu, Song, Ha Doo, Sung, S. and Lee, D. H., “A numerical study of thermo-fluid phenomena in metal hydride beds in the hydriding process,” International Journal of Heat and Mass Transfer 47 (2004) 2901-2912.
Incropera, F. P., Dewitt, D. P., Bergman, T. L. and Lavine, A. S., Fundamentals of Heat and Mass Transfer. 6th. New York: John Wiley and Sons (2007) 425-426.
Jemni, A. and Nasrallah, S. B., “Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy 20 (1995a) 43-52.
Jemni, A. and Nasrallah, S. B., “Study of two-dimensional heat and mass transfer during absorption in a metal-hydrogen reactor,” International Journal of Hydrogen Energy 20 (1995b) 881-891.
Jemni, A., Nasrallah, S. B., Lamloumi J., “Experimental and theoretical study of a metal-hydrogen reactor,” International Journal of Hydrogen Energy 24 (1999) 631-644.
Kobus, C. J. and Shumway, G., “An experimental investigation into impinging forced convection heat transfer from stationary isothermal circular disks,” International Journal of Heat and Mass Transfer 49 (2006) 411-414.
Laurencelle, F. and Goyette, J., “Simulation of heat transfer in a metal hydride reactor with aluminium foam,” International Journal of Hydrogen Energy 32 (2007)2957-2964.
Lewis, F. A., “The Palladium Hydrogen System”, Academic Press,London (1967).
Martin, M., Gommel, C., Borkhart, C. and Fromm, E., “Absorption and desorption kinetics of hydrogen storage alloys,” Journal of Alloys and Compounds 238(1996)
193-201.
Mat, D. and Kaplan, Y., “Numerical study of hydrogen absorption in an Lm–Ni5 hydride reactor,” International Journal of Hydrogen Energy 26 (2001) 957-63.
MacDonald, B. and Rowe, A., “Impacts of external heat transfer enhancements on metal hydride storage tanks,” International Journal of Hydrogen Energy 31 (2006b)
1721-1731.
MacDonald, B. D. and Andrew, M. R., “Experimental and numerical analysis of dynamic metal hydride hydrogen storage systems,” Journal of Power Sources 174 (2007) 282-293.
Mayer, U., Groll, M. and Supper W., “Heat and mass transfer in metal hydride reaction beds: experimental and theoretical results,” Journal of the Less-Common Metals
131 (1987) 205-210.
Muthukumar, P., Madhavakrishna, U. and Dewan, A., “Parametric studies on a metal hydride based hydrogen storage device,” International Journal of Hydrogen Energy 32 (2007) 4988-4997.
Muthukumar, P., Satheesh, A., Linder, M., Mertz, R. and Groll, M., “Studies on hydriding kinetics of some La-based metal hydride alloys,” International Journal of Hydrogen Energy 34 (2009) 7253-7262.
Muthukumar, P., Satheesh, A., Madhavakrishna, U. and Dewan, A., “Numerical investigation of coupled heat and mass transfer during desorption of hydrogen in metal hydride beds,” Energy Conversion and Management 50 (2009) 69-75.
Nasrallah, S. B. and Jemni, A., “Heat and mass transfer models in metal-hydrogen reactor,” International Journal of Hydrogen Energy 22 (1997) 67-76.
Nakagawa, T., Inomata, A., Aoki, H. and Miura, T., “Numerical analysis of heat and mass ransfer characteristics in the metal hydride bed,” International Journal of Hydrogen Energy 25 (2000) 339-350.
Phate, A. K.,Maiya M. P. and Murthy S. S., “Simulation of transient heat and mass transfer during hydrogen sorption in cylindrical metal hydride beds,” International Journal of Hydrogen Energy 32 (2007)1969-1981.
Reilly J. J. and Wiswall R. H., “Formation and properties of iron titanium hydride,” Inorg. Chem. 13 (1974) 218-222.
Reilly J. J. and Wiswall R. H., “Reaction of hydrogen with alloys of magnesium and nickel and the formation of Mg2NiH4,” Inorg. Chem. 7 (1968) 2254-2256.
Sandrock, G., “A panoramic overview of hydrogen storage alloys from a gas reaction point of view,” Journal of Alloys and Compounds 293 (1999) 877-888.
Schlapbach L., “Hydrogen-storage materials for mobile applications,” Nature 414 (2001)353-358.
Suda S, Kobayashi N, “Reaction kinetics of metal hydride and their mixtures,” J Less Common Met 73 (1980) 119-126.
White, F. M., Fluid mechanics. 4th Ed., New York: McGraw-Hill (1999).
Yang, F., Xoamgyu, M., Jianqiang, D., Wang, Y. and Zhang, Z., “Identifying heat and mass transfer characteristics of metal hydride reactor during adsorption-Parameter analysis and numerical study,” International Journal of Hydrogen Energy 33 (2008)1014-1022.
Züttel, A., “ Materials for hydrogen storage,” Materials Today (2003)24-33.
曲新生和陳發林,氫能技術,五南出版社,(2006) 60-63.
胡子龍,儲氫材料,曉圓出版社,(2006) 16-19,45-46.
楊書聞, 金屬儲氫罐熱傳增強設計與實驗分析, 國立中央大學能源工程研究所碩士論文, 2011.
陳元任, 熱管做為熱傳增強元件之金屬氫化物儲氫容器吸氫熱流模擬研究,國立中央大學機械工程學系碩士論文,2011.

指導教授 鍾志昂(Chih-Ang Chung) 審核日期 2012-10-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明