台灣聯合大學系統100學年度碩士班考試命題紙

科目: 工程數學 C(3005)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所(甲組、乙組)

交通大學電信工程研究所(乙A組、乙B組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

- 請將答案依下圖所示由上而下依序寫在答案卷的作答區的第一頁。
- 只要填寫考題所要求的答案,請勿附加計算過程。

從此處開始寫起
- `
= `
= \
四、
五、(一) · · · (二) · · ·
:

- \cdot (5%) If F(s) is the Laplace transform of f(t), denoted by $F(s) = \mathcal{L}\{f(t)\}$, find the inverse Laplace transform $\mathcal{L}^{-1}\{F(as+b)\}$ in terms of f(t), where a>0 and $b\neq 0$.
- 二、 (5%) Solve

$$y'(t) = y(t) + 4 \int_0^t e^{-2(t-\tau)} y(\tau) d\tau, \quad y(0) = 1.$$

三、 (5%) Let

$$A = \left[\begin{array}{cc} 2 & -5 \\ 1 & -2 \end{array} \right].$$

Compute e^{At} .

- 四、 (5%) Consider the non-homogeneous linear system $\underline{x}' = A\underline{x} + e^{\alpha t}\underline{v}$, where \underline{x} is a vector consisting of functions in t, α is not an eigenvalue of A, and $\underline{v} \neq \underline{0}$ is a constant vector. Find a particular solution of the system, in terms of A, α , \underline{v} and t.
- 五、(10%)
 - (-) (5%) Determine the Fourier series coefficients (a_n, b_n) of the function $f(t) = t \cdot u(t)$ expanded over the interval $(-\pi, 2\pi)$, where u(t) is the unit-step function.
 - (=) (5%) If the coefficients (a_n, b_n) from $\mathfrak{L} \cdot (-)$ are also the Fourier series coefficients of some function expanded over the interval $(-2\pi, 4\pi)$, find the function in terms of f(t).
- $\dot{\pi}$ ` (10%) Solve the following boundary value problem for f(x,t) with x>0 and 0< t<10

$$\begin{split} \frac{\partial^2}{\partial t^2} f(x,t) &= \left. 3 \frac{\partial}{\partial x} f(x,t), \right. \\ \left. \frac{\partial}{\partial t} f(x,t) \right|_{t=0} &= \left. \frac{\partial}{\partial t} f(x,t) \right|_{t=5} = \left. \frac{\partial}{\partial t} f(x,t) \right|_{t=10} = 0, \quad f(0,t) = 4 \cos(\pi t) \end{split}$$

注:背面有試題

科目: 工程數學 C(3005)

参考用

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所(甲組、乙組)

交通大學電信工程研究所 (乙A組、乙B組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

- \pm (12%) Given $y_1(x) = x^r$ is one solution of the homegeneous 2nd order linear differential equation $x^2y'' 5xy + 9y = 0$.
 - () (2%) Derive its characteristic equation in terms of parameter r.
 - (\equiv) (3%) Let $y_2(x) = v(x)y_1(x)$ be another linearly independent solution. Determine the governing differential equation of v(x).
 - (\equiv) (3%) Find v(x) by solving the differential equation in \pm \cdot (\equiv) .
 - (y) (4%) Apply the method of variation of parameters to find a particular solution of $y'' \frac{5}{\pi}y' + \frac{9}{\pi^2}y = x^2$
- \wedge (8%) Solve the differential equation $(x^2 1)y'' 6xy' + 12y = 0$ by power series of the form $y(x) = \sum_{n=0}^{\infty} c_n x^n$.
 - (-) (2%) Find the recurrence relation of c_n
 - (=) (4%) Find the two linearly independent solutions. Write the first three nonzero terms of each series if it is an infinite series.
 - (三) (2%) Find the guaranteed radius of convergence.
- \hbar ' (10%) A system of linear equations has unknown coefficients which can be expressed with the real variable a. The system is as follows

$$\begin{bmatrix} 1 & a & 0 \\ 0 & 1 - a^2 & 1 \\ 0 & 0 & 1 + a^2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

Please determine the value of a for the system to have nontrivial solutions.

- + (7%) Let A be an $n \times n$ matrix. Assume $\sigma_1 \ge \cdots \ge \sigma_n$ are singular values of A. For any $\underline{x} \ne \underline{0}$ (element-wise not equal to), what is the relationship between $\sigma_1 \|\underline{x}\|_2$, $\sigma_n \|\underline{x}\|_2$, and $\|A\underline{x}\|_2$, where $\|\underline{x}\|_2$ denotes the Euclidean norm of vector \underline{x} ? Justify your answer algebraically.
- $+-\cdot$ (8%) Given $n\times n$ positive definite matrices A and B, for any $\underline{x}\neq \underline{0}$, derive the expression to find the smallest value of $\det\left(\frac{\underline{x}^{\top}A\underline{x}}{\underline{x}^{\top}B\underline{x}}\right)$. What is this smallest value? Find the expression for \underline{x} , or function thereof, to achieve this minimum value.

科目: 工程數學 C(3005)

校系所組:中央大學電機工程學系(電子組)

交通大學電子研究所(甲組、乙A組、乙B組)

交通大學電控工程研究所(甲組、乙組)

交通大學電信工程研究所 (乙A組、乙B組)

清華大學電機工程學系(甲組)

清華大學光電工程研究所

清華大學電子工程研究所

清華大學工程與系統科學系(丁組)

+= \(\(\psi\) (15\%) Let \mathcal{P}_3 be the set of all polynomials of the form $a_0+a_1x+a_2x^2+a_3x^3$, where a_0 , a_1 , a_2 , and a_3 are real numbers. Assume $T:\mathcal{P}_3\to\mathcal{P}_3$ is a linear transformation with

$$T(a_0 + a_1x + a_2x^2 + a_3x^3) = (a_0 + a_3) + (a_1 + a_0)x + (a_2 + a_1)x^2 + (a_3 + a_2)x^3$$

- (-) (6%) Find the range and null space of T.
- (=) (4%) Assume any polynomial $p(x) \in \mathcal{P}_3$ can be represented as

$$p(x) = x_1 \cdot 1 + x_2 \cdot (1+x) + x_3 \cdot (1+x+x^2) + x_4 \cdot (1+x+x^2+x^3)$$

and its corresponding polynomial T(p(x)) is represented as

$$T(p(x)) = y_1 \cdot 1 + y_2 \cdot (1+x) + y_3 \cdot (1+x+x^2) + y_4 \cdot (1+x+x^2+x^3).$$

Please find the corresponding matrix M such that

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = M \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}.$$

(\equiv) (5%) Please find all polynomials that map to $1 + 2x + 2x^2 + x^3$. That is, please find all p(x) such that $T(p(x)) = 1 + 2x + 2x^2 + x^3$.