科目 工程數學

類組別 033

共<u>之</u>頁 第<u>/</u>頁 *請在試卷答案卷(卡)內作答

Engineering Mathematics

1. (5%) Reduce, by letting $u(x) = [y(x)]^{l-a}$ where a is a constant, to a linear form and solve the following differential equation: (Section 1.6, Prob. 33)

$$y' + \frac{1}{3}y = \frac{1}{3}(1 - 2x)y^4$$

2. (5%) Converting the given equation y'' - 9y = 0 to a system $\vec{y}' = \vec{A}\vec{y}$, where \vec{A} is a 2×2 matrix, and then determining \vec{A} . (section 3.1, Prob. 9)

3. (10%) Given the differential equation (Equation (2) on Page 108)

$$y'' + p(x)y' + q(x)y = r(x)$$
 (1)

with arbitrary variable function p(x), q(x), and r(x) that are continuous on some interval I. Use the method of variation to show a particular solution of (1) on I in the form

$$y_p(x) = -y_L \int \frac{y_2 r}{W} dx + y_2 \int \frac{y_1 r}{W} dx$$

where y_1 , y_2 form a basis of solutions of the homogeneous equation corresponding to (1), and

$$W = -y_{1}y_{2}' - y_{2}y_{1}'$$

- 4. (10%) Find a power series solution in powers of x of the following differential equation y' = -2xy. (Section 4.2 prob. 1)
- 5. (10%) Solve the system of equation (section 6.6 Prob. 19)

$$3x + 7y + 8z = -13$$
$$2x + 9z = -5$$

$$-4x + y - 26z = 2$$

by Gramer's rule.

- 6. (10%) Given $\vec{A} = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$. Find the eigenvalues of \vec{A} , and also diagonalization of \vec{A} . (section 6.7 prob. 1)
- 7. (10%) A vector field is given by $\vec{u} = y^2 \vec{i} + 2xy \vec{j} z^2 \vec{k}$. Determine the

注:背面有試題

科目 工程數學

類組別 033

共<u>之</u>頁 第<u>2</u>頁 *請在試卷答案卷(卡)內作答

divergence of \vec{u} and curl of \vec{u} at the point (1,2,1). Also, determine if the vector field is solenoidal or irrotational.

- 8. (10%) Use Stroke's theorem to evaluate $\oint_C z^2 \exp(x^2) dx + xy^2 dy + \tan^{-1} y dz$, where C is the circle $x^2 + y^2 = I$.
- 9. (a) (5%) Find the volume of the sphere $x^2 + y^2 + z^2 = a^2$.
 - (b) (5%) By (a), find the volume of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.
- 10. (10%) Find the Fourier series of

$$f(x) = \begin{cases} 1, & -1 < x < 1 \\ x, & 0 \le x \le 1 \end{cases}$$

11. (10%) Solve
$$y \frac{\partial^2 u}{\partial x \partial y} + u = 0$$
.