博碩士論文 993208019 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.147.43.113
姓名 葉人菘(Jen-Sung Yeh)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 應用於矽薄膜化學氣相沉積製程之電子迴旋共振電漿模擬研究
(The simulation study of Electron Cyclotron Resonance Plasma for silicon thin film Deposition process)
相關論文
★ 以磁場模擬法設計磁鐵排列改善濺鍍機台之填洞能力★ 高頻RF感應加熱器應用於MOCVD承載盤之均溫性探討分析
★ 局域性表面電漿效應應用於增益有機發光二極體發光強度之參數優化研究★ 最佳化設計金屬有機化學氣相沉積高溫加熱系統數值分析研究
★ 以濺鍍CIG三元靶調變硒化製程壓力製作CIGS太陽能電池之特性分析★ 最佳化OLED面型蒸鍍加熱器設計與腔體流場數值分析
★ 以電漿診斷探討電漿輔助化學氣相沉積系統之製程環境優化對氫化非晶矽鈍化品質之影響★ 電漿診斷系統輔助化學氣相沉積之鈍化層薄膜製程區間研究
★ 以數值分析法分析氮化鎵薄膜沉膜機制之探討暨實作驗證★ 電弧噴塗積層製造:Ta/TaN 薄膜物理氣相沉積中腔體襯套翻新與顆粒缺陷減少相關性研究
★ 以RTP硒化法探討CIS薄膜及元件特性之研究★ 局域性表面電漿共振效應應用於OLED出光增益之研究
★ TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究★ TE 微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究
★ 自製蘭牟爾探針診斷TE微波模式電子迴旋共振電漿★ 以噴塗技術在不銹鋼基板上沉積氧化矽阻隔層應用於可撓式CIGS太陽電池之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究使用COMSOL流體模型軟體模擬電子迴旋共振化學氣相沉積(ECR-CVD)之矽薄膜製程,以蘭摩爾探針(Langmuir probe)結合電漿放射光譜儀(Optical Emission Spectroscopy, OES)作為模擬驗證工具,藉由模擬的方式瞭解其中電漿的基本特性與活性粒子的密度及分佈情況,並探討改變操作參數(微波功率、製程壓力、磁場組態、氫稀釋比)下電漿的變化。
模擬結果顯示,共振區之電子透過迴旋加熱機制吸收了大於90%的微波能量,而受到共振反應影響,電子密度及電子溫度之極大值皆分佈在共振區附近。此外,電漿裡重要活性粒子之分佈情形,主要是由產生的機制不同所造成,其中,SiH3與H主要是由電子碰撞SiH4生成,而SiH2粒子的反應有兩個主要來源,一方面為SiH3互相碰撞生成;另一方面由電子碰撞SiH4所產生。操作參數方面,改變功率主要影響電子密度,電子溫度則無太明顯變化;壓力部分,電子密度及溫度隨壓力上升而明顯降低;而控制主磁場改變不同共振區間可得不同物種濃度分佈;氫稀釋比(H2/SiH4)部分,隨著氫稀釋比的增加將快速地減少SiH3密度,而H原子密度則隨之上升,因此增加氫稀釋比將減少沉積速率,並且增加薄膜之微晶結晶率。最後,數值模擬結果與蘭摩爾探針及OES之實驗量測值作比較,可獲得一致的結果。
摘要(英) This research used COMSOL fluid model software to simulate the silicon thin-film plasma process received from the electron cyclotron resonance chemical vapor deposition (ECR-CVD). This study also used the simulation results to verify the results obtained from Langmuir probe and the Optical Emission Spectroscopy (OES). From such simulation results, we can understand the basic properties of the plasma as well as the distribution and the density of the active species. In addition, we can predict the changes of plasma properties under different operating parameters such as microwave power, pressure, magnetic field and hydrogen dilution ratio (H2/SiH4).
The results of simulation show that electrons in the resonance zone through repeated heating process absorb more than 90% of the microwave energy. Under the influence of resonance in reactions, both electron density (Ne) and electron temperature (Te) have the largest amounts around the resonance zone. The distributions of radicals in the plasma mainly are due to differences in their plasma formation. Thus, SiH3 and H species are generated mainly due to the collisions of an electron and SiH4. On the other hands, SiH2 species are generated as the results of collisions of either 2SiH3 particles or an electron with and SiH4. Power variations will change the electron density, but electron temperature seem not to change much. Increase of pressure will decrease both electron temperature and density. Changing the magnetic field will change the resonance zone as well as the density of different species. Thus, the different species distributions can be obtained by controlling the main magnetic field. When hydrogen dilution ratio increases, SiH3 species will rapidly decrease since H density is increased. Thus, the deposition rate of amorphous silicon (a-Si:H) will decrease and the crystalline fraction of thin films is increased. Finally, these simulation results show a good agreement with the measurement results of Langmuir probe and OES.
關鍵字(中) ★ 電子迴旋共振化學氣相沉積
★ 矽薄膜
★ 電漿模擬
關鍵字(英) ★ ECR-CVD
★ silicon thin film
★ plasma simulation
論文目次 第一章 簡介 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻整理及基本回顧 5
2-1 電漿簡介 5
2-1-1 電漿原理及特性 5
2-1-2 磁場下帶電粒子運動行為 10
2-2 薄膜沉積 16
2-2-1 薄膜沉積原理 16
2-2-2 化學氣相沉積(CVD) 19
2-3 矽薄膜介紹 27
2-4 電漿模擬文獻回顧 35
第三章 模擬與實驗架構 38
3-1研究方法 38
3-1-1研究架構 39
3-2 數值模擬方法 39
3-2-1 流體模型 39
3-2-2 磁場方程式 40
3-2-3電子傳輸方程式 40
3-2-4 離子與中性粒子傳輸方程式 44
3-2-5 電磁場方程式 46
3-2-6 幾何結構 46
3-2-7 邊界條件 48
3-2-7 反應式資料庫 48
3-3 實驗設備及原理 55
3-3-1 電子迴旋共振氣相沉積系統(Electron cyclotron resonance chemical vapor deposition, ECR-CVD) 55
3-3-2蘭摩爾探針(Langmuir probe) 58
3-3-3 電源電錶(Keithley 2400) 59
3-3-4 光放射光譜儀(OES) 60
第四章 結果與討論 64
4-1 腔體內磁場組態分析 64
4-2 ECR電漿特性模擬與分析 69
4-2-1 模擬參數與起始條件 69
4-2-2 ECR電漿特性分析 70
4-2-3主要鍍膜粒子之生成機制分析 72
4-3 微波功率 78
4-3-1 微波功率對電漿特性之影響 78
4-3-2 微波功率對主要鍍膜粒子的影響 83
4-4 製程壓力 89
4-4-1 製程壓力對電漿特性之影響 89
4-4-2 製程壓力對主要鍍膜粒子的影響 93
4-5 磁場組態 98
4-5-1磁場組態對電漿特性之影響 98
4-5-2 磁場組態對主要鍍膜粒子的影響 104
4-6氫稀釋比 108
4-6-1氫稀釋比對電漿特性之影響 108
4-6-2 氫稀釋比對主要鍍膜粒子的影響 113
第五章 結論 117
參考文獻 119

參考文獻 [1]黃惠良,曾百亨,太陽電池,五南出版社,2008年12月。
[2]National renewable energy laboratory(USA), 2008, http://www.nrel.gov/.
[3]Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[4]羅正忠,半導體製程技術導論,歐亞出版社,2006年。
[5]I. H. Hutchinson, Principles of Plasma Diagnostics, Cambridge University Press, 2002.
[6]魏寶文、趙紅衛著,離子的噴泉,一版,清華大學、暨南大學,北京,2001.
[7]D. J. Griffiths, Introduction to Electrodynamics, third edition, Prentice Hall, U.S.A., 1998.
[8]A. B. Cambel, M. Cambel, Plasma physics, Boston Heath, 1965.
[9]S. M. Rossnagel, J. J. Cuomo, W. D. Westwood, “Handbook of plasma processing technology Fundamentals”, William Dickson, 1937.
[10]H. R. Kaufman,”Explanation of Bohm diffusion”, J. Vac. Sci. Technol, Vol B, Vol 8, pp. 107-109, 1990.
[11]Smith, L. Donald, Thin Film Deposition: principles and practice, First edition, McGraw-Hill, 1994.
[12]M. Quirk, J. Serda, Semiconductor Manufacturing Technology, Prentice Hall, 2001.
[13]莊達人,VLSI 製造技術,高立圖書有限公司,1996。
[14]J. Venables, “Nucleation and growth of thin films”, Rep. Prog. Phys., Vol 47, pp. 399-459, 1984.
[15]A. Matsuda, M. Takai, T. Nishimoto, M. Kondo, “Solar Energy Materials & Solar Cells”, Vol 78, pp. 3-26, 2003.
[16]A. Matsuda, “Thin-film silicon growth process and solar cell application”, Japanese Journal of Applied Physics, Vol 43, pp. 7909-7920, 2004.
[17]Y. Ruohe, L. Kuixun, S. Wangzhou, L. Xuangying, “Relative abundance ratio of SiH2 and SiH3 radicals in the course of silane radio-frequency glow discharge”, 1997.
[18]M. J. Kushner, “On the balance between silylene and silyl radicals in rf glow discharges in silane: The effect on deposition rates of a-Si:H”, J. Appl. Phys., Vol 62, pp. 2803-2811, 1987.
[19]Y. Kawai, K. Uchino, H. Muta, S. Kawai, Tobias Rowf, “Development of large diameter ECR plasma source”, Vacuum, Vol 84, pp. 1381-1384, 2010.
[20]T. B. Song, M. Z. Bin, W. Z. Hui, “Measurement of microwave ECR oxygen plasma parameter”, Journal of Wuhan Institute of Technology, 2009.
[21]M. Murata, S. Uchida, K. Kishimoto, M. Tanaka, A. Komori, Y. Kawai, “ECR plasma CVD in different magnetic field configurations”, J.J.A.P., Vol 31, pp. 1499-1502, 1992.
[22]Y. Ueda, Y. Inoue, S. Shinohara and Y. Kawai, “Deposition of large area amorphous silicon films by ECR plasma CVD”, Vacuum, Vol 48, pp. 119-122, 1997.
[23]A. Triska, D. Dennison, H. Fritzsche, Bull. Am., Phys. Soc., Vol 20, pp. 20-392, 1975.
[24]R.E. I. Schropp, M. Zeman, Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic, Boston, 1998.
[25]J. Robertson, “Growth mechanism of hydrogenated amorphous silicon” Journal of Non-Crystalline Solids, Vol 266-269, pp. 79-83, 2000.
[26]H. F. Sterling, R. C. G. Swann, “Chemical vapour deposition promoted by r.f. discharge”, Solid-State Electron, Vol 8, pp. 653, 1965.
[27]D. L. Staebler, C. R. Wronski, Appl. Phys. Lett., Vol 31, pp. 292-294, 1977.
[28]A. V. Shah, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz, U. Graf, “Material and solar cell research in microcrystalline silicon ”, Solar Energy Materials and Solar Cells, Vol 78, pp. 469-491, 2003.
[29]O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MucK, B. Rech, H. Wagner, “Intrinsic microcrystalline silicon: A new material for photovoltaics”, Solar Energy Materials and Solar Cells, Vol 62, pp. 97-108, 2000.
[30]A. Matsuda, ”Growth mechanism of microcrystalline silicon obtained from reactive plasmas”, Thin Solid Films, Vol 337, pp. 1-6, 1999.
[31]R. L. Kinder, M. J. Kushner, “Consequences of mode structure on plasma properties in electron cyclotron resonance sources”, Journal of Vacuum Science & Technology A, Vol 17, pp. 2421-2431, 1998.
[32]C. B. Shin, J. S. Hur, S. G. Oh, “A two-dimensional simulation of electron cyclotron resonance plasma andcomparison with experimental data”, Thin Solid Films, Vol 341, pp. 18-21, 1999.
[33]M. Liu, X. Hu, H. Wu, Q. Wu, G. Yu, Y. Pan, “Two-dimensional simulation of an electron cyclotron resonance plasma source with self-consistent power deposition”, Surface and Coatings Technology, Vol 131, pp. 29-33, 2000.
[34]H. Muta, N. Itagaki, Y. Kawai, “Numerical investigation of the production mechanism of a low-temperature electron cyclotron resonance plasma”, Vacuum, Vol 66, pp. 209-214, 2002.
[35]H. Muta, M. Koga, N. Itagaki, Y. Kawai, “Numerical investigation of a low-electron-temperature ECR plasma in Ar/N2 mixtures”, Surface and Coatings Technology, Vol 171, pp. 157-161, 2003.
[36]Y. Liu, Y. Wang, S. Cui, X. Wang, S. Zheng, X. Wang, “The effects of the operational parameters of the reactor on ECR plasma characteristics”, Vacuum, Vol 80, pp. 1367-1370, 2006.
[37]M. Koga, H. Muta, A. Yonesu, Y. Kawai, “Experimental and numerical investigation of ion temperature in an ECR plasma”, Vacuum, Vol 80, pp. 771-775, 2006.
[38]J. Perrin, O. Leroy, M. C. Bordage, “Cross-sections, rate constants and transport coefficients in silane plasma chemistry”, Contributions Plasma Physics, Vol 36, pp. 3-49, 1996.
[39]G. J. Nienhuis, W. J. Goedheer, E. A. G. Hamers, W. G. J. H. M. van Sark, and J. Bezemer, “A self-consistent fluid model for radio-frequency discharges in SiH4-H2 compared to experiments”, J. Appl. Phys. , Vol 82, pp. 2060-2071, 1997.
[40]E. Meeks, R. S. Larson, P. Ho, C. Apblett, S. M. Han, E. Edelberg, E. S. Aydil, “Modeling of SiO2 deposition in high density plasma reactors and comparisons of model predictions with experimental measurements”, J. Vac. Sci. Technol. A, Vol 16, pp. 544-563, 1998.
[41]M. J. Kushner, “A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon”, J. Appl. Phys. , Vol 63, pp. 2532-2551, 1988.
[42]J. L. Giuliani, V. A. Shamamian, R. E. Thomas, J. P. Apruzese, M. Mulbrandon, R. A. Rudder, R. C. Hendry, A. E. Robson, “Two-dimensional model of a large area, inductively coupled, rectangular plasma source for chemical vapor deposition”, IEEE TRANSACTIONS ON PLASMA SCIENCE, Vol 27, pp. 1317-1328, 1999.
[43]K. D. Bleecker, D. Herrebout, A. Bogaerts, R. Gijbels, P. Descamps, “One-dimensional modelling of a coupled rf plasma in silane/helium, including small concentrations of O2 and N2”, J. Phys. D: Appl. Phys. , Vol 36, pp. 1826-1833, 2003.
[44]P. Haaland, “Dissociative attachment in silane”, J. Chem. Phys. , Vol 93, pp. 4066-4072, 1990.
[45]M. Wakaki, K. Kudo, T. Shibuya 編著,光學材料手冊(Physical Properties and Data of Optical Materials),周海憲、程云芳譯,化學工業出版社,2010年。
[46]W. L. Stutzman, G. A. Thiele, Antenna Theory and Design, New York: John Wiley & Sons, 1981.
[47]P. Tristant, Z. Ding, Q. B. Trang Vinh, H. Hidalgo, J. L. Jauberteau, J. Desmaison, C. Dong, “Microwave plasma enhanced CVD of aluminum oxide films:OES Diagnostics and Influence of the RF Bias.”, Thin Solid Films, Vol 390, pp. 51-58, 2001.
[48]E. M. Campbell, M. D. Rosen, D. W. Phillion, R. H. Price, K. Estabrook, B. F. Lasinski, “Laser plasma coupling in long pulse, long scale length plasmas”, Appl. Phys. Lett., Vol 43, pp. 54-56, 1983.
[49]A. Francis, U. Czarnetzki, H. F. Döbele, N. Sadeghi, “Quenching of the 750.4 nm argon actinometry line by H2 and several hydrocarbon molecules”, Appl. Phys. Lett., Vol 71, pp. 3796-3798, 1997.
[50]潘彥妤,「微晶矽薄膜製程之電漿放射光譜分析與其在太陽能電池之應用」,私立中原大學,碩士論文 ,2008年。
[51]李永祥,「TE微波模式電子迴旋共振化學氣相沉積於大面積非晶矽薄膜均勻度之研究」,國立中央大學,碩士論文,2011年。
[52]吳昭穎,「TE模式電子迴旋共振化學氣相沉積之矽薄膜電漿光譜研究」,國立中央大學,碩士論文,2011年。
指導教授 利定東(Tomi Li) 審核日期 2012-11-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明