以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:77 、訪客IP:18.116.86.132
姓名 鄭楷照(Kai-Zhao Zheng) 查詢紙本館藏 畢業系所 資訊工程學系 論文名稱 無線感測網路十字型指向性天線陣列指紋定位法
(Fingerprinting Localization with Cross Directional Antenna Arrays for Wireless Sensor Networks)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 在無線感測網路 (Wireless Sensor Network, WSN) 的定位方法中,指紋比對 (fingerprinting) 方法透過事先訓練量測環境中不同位置的無線電訊號樣式,在定位時從訓練的樣式中選出與當前訊號相似者來估測目標位置,可以達到很好的準確度但需要花費較高的訓練成本。指向性天線 (Directional antenna) 因其各個角度的訊號增益程度不同,可透過指向性天線通訊的訊號強度變化情況,量測訊號入射角度 (Angle of Arrival, AoA) 以進行定位。本論文提出一個結合指紋比對與指向性天線的無線感測網路定位方法,稱為FLCDAA (Fingerprinting Localization with Cross Directional Antenna Arrays for WSNs),我們在各個已知位置的錨節點 (Anchor node) 上配置四隻呈十字型排列的指向性天線,對目標節點 (Target node) 估測位置。各個錨節點能夠獨自對鄰近的目標節點定位。本文方法可分為訓練與定位二個階段:在訓練階段,我們利用事先量測指向性天線的天線訊號樣式 (Antenna radio pattern) 取代傳統指紋比對定位方法的環境樣式以降低訓練成本;在定位階段,錨節點根據四隻天線所收到的接收訊號強度階度 (Received signal strength indicator, RSSI),比對訓練的樣本進行定位。本論文另外提出了將訓練階段所蒐集到的樣式透過迴歸分析工具簡化成近似關係函數以減少比對樣式數目加快定位的方法。我們在室內體育館實驗檢驗所提出的方法的效果,在半徑為6公尺的圓型區域內定位的平均距離誤差為24 cm,並且能夠迅速完成定位。為了降低量測成本,針對不同的量測距離與量測角度精密度進行實驗,以得知實作時合適的量測取樣精密度;並且透過使用一隻天線的量測樣式取代所有同型號天線的實驗,測試只訓練一隻天線時,因為天線間個體差異對定位結果造成的影響,以降低訓練成本提高可擴大性(scalability)。 摘要(英) Fingerprinting method measures the radio signal patterns at certain location in the environment in an offline phase, and it localizes target devices according the similarity between current signal pattern and prior collected patterns. Directional antenna can distinguish the signal strength from different angle of arrival (AoA) based on its individual power gain for different directions. This paper presents a localization method for wireless sensor networks (WSNs), which using fingerprinting and directional antenna, called FLCDAA (Fingerprinting Localization with Cross Directional Antenna Arrays for WSNs). We set four directional antennas be cross arrangement at location-known anchor nodes, which an anchor node can independently localize its neighboring location-unknown target nodes. In offline phase, we measures and records the received signal strength indicator (RSSI) value which an anchor node receives a signal emitted from target node at different distances and angles, we store 4-tuple RSSI value as the radio pattern of antennas. In online phase, anchor node compares the RSSI values of signal emitted from target node with prior collected patterns for finding the best match one to estimate the related location of the sensor node corresponding to the anchor node. Furthermore, FLCDAA presents an accelerating method, performing linear regression to generating approximation functions to fit the AoA and RSSI-Difference value of any two vertical antennas in an anchor, and we use the approximation functions to reduce amount of pattern compared in online phase. We have to implemented an anchor of FLCDAA in a circular area with a radius of 6 meters within a indoor gym, we gather 100 patterns at each measuring position, take half of patterns be training data and the other half be the test data. The experiment average error is 24 centimeters for base method。In order to apply in bigger area, and try to train one antenna to replace other same type antennas to reduce training cost for scalability. 關鍵字(中) ★ 無線感測網路
★ 定位
★ 指向性天線
★ 指紋定位法關鍵字(英) ★ Wireless Sensor Networks
★ Localization
★ Directional Antenna
★ Fingerprinting論文目次 摘要 i
abstract ii
目錄 iii
圖目錄 v
表目錄 vii
1. 緒論 1
2. 相關研究 5
2.1. RADAR [13] 5
2.2. A New Search Strategy of Radio Fingerprint Matching Method in Wireless Sensor Network [14] 6
2.3. ALRD [12] 8
2.4. DIR [9] 9
2.5. RAL [10] 11
3. FLCDAA 定位機制 12
3.1. 網路架構與假設條件 12
3.2. 基本方法 (Exhaustive search method) 16
3.2.1. 訓練階段 (Training phase) 17
3.2.1.1. 量測指向性天線的RSSI樣式 (Measuring RSSI Pattern of Antenna) 17
3.2.2. 定位階段 (Localization phase) 19
3.2.2.1. 決定最強訊號天線 (Choosing strongest antenna) 19
3.2.2.2. 比對樣式,挑選最符合現況者 (Choosing the most closely matches) 19
3.3. 加速方法 (Accelerating method) 22
3.3.1. 定位前處理階段 (Preprocessing phase) 24
3.3.1.1. 產生接收訊號強度差值與訊號入射角度的迴歸函數 (Generating RSSI-Difference to AoA regression functions) 24
3.3.2. 定位階段 (Localization phase) 26
3.3.2.1. 決定最強訊號天線 (Choosing strongest antenna) 26
3.3.2.2. 使用接收訊號差值計算個別距離下的訊號入射角度(Estimating angles using RSSI-Differences) 26
3.3.2.3. 比對樣式,挑選最符合現況者 (Choosing the most closely matches) 28
3.4. 基本方法與加速方法的折衷作法 (Compromised method) 29
4. 實驗結果與效能分析 31
4.1. 使用儀器介紹 31
4.2. 實驗場景描述 35
4.3. 實驗步驟與結果 36
4.3.1. 訓練階段實驗 36
4.3.2. 定位階段實驗 37
4.3.3. 量測取樣精細度對距離誤差的影響 40
4.3.4. 同型號天線校調 41
4.4. 討論 43
4.4.1. 與其他方法比較 43
4.4.2. 當一個錨節點上的四隻天線有部分訊號遺失未收到,則至多可允許多少訊號遺失仍可進行定位? 45
4.4.3. 當一個目標節點的訊號被多顆錨節點接收到時的處理。 46
4.4.4. 以目標感測器發送訊號給錨節點接收(四隻指向性天線),亦或是錨節點發送訊號給目標感測器接收。 46
4.4.5. 錨節點在實際應用實的佈置考量: 延伸至三維空間的作法 47
5. 結論與未來方向 49
A.附錄 50
A.1. 個別距離下四隻指向性天線接收訊號強度RSSI與對應 AoA 50
A.2. 個別距離下錨節點中二隻相鄰指向性天線的訊號強度差值(RSSI-Difference)與對應訊號入射角度(AoA), 以1號天線與2號天線為例 56
引用文獻 58
參考文獻 [1] F. Akyildiz, S. Weilian, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,” IEEE Communications Magazine, vol. 40, pp. 102-114, 2002.
[2] John R. Lowell, “Military Applications of Localization, Tracking, and Targeting,” IEEE Wireless Communications, vol. 18, pp. 60-65, 2011.
[3] Anuroop Gaddam, Subhas Chandra Mukhopadhyay, Fellow, IEEE, and Gourab Sen Gupta, Senior Member, IEEE, “Elder Care Based on Cognitive Sensor Network,” IEEE Sensors Journal, vol. 11, pp. 574-581, 2011.
[4] G. Arturo Sánchez-Azofeifa, Cassidy Rankine, Mario Marcos do Espirito Santo, Rob Fatland, Milton Garcia, “Wireless Sensing Networks for Environmental Monitoring: Two Case Studies from Tropical Forests,” in Proceeding of IEEE International Conference on e-Science, pp. 70-76, 2011.
[5] Dae-Man Han and Jae-Hyun Lim, “Smart Home Energy Management System using IEEE 802.15.4 and Zigbee,” IEEE Transactions on Consumer Electronics, vol. 56, pp. 1403-1410, 2010.
[6] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins, Global Positioning System: Theory and Practice, Berlin, Springer-Verlag, 1997.
[7] http://en.wikipedia.org/wiki/Log-distance_path_loss_model
[8] Maciej Mendalka, Karol Bizewski, Łukasz Kulas, Krzystof Nyka, “Pattern Matching Localization in ZigBee Wireless Sensor Networks,” in Proceeding of International Conference on Microwave Radar and Wireless Communications(MIKON), pp.1-4, 2010.
[9] Chia-Ho Ou, “A Localization Scheme for Wireless Sensor Networks Using Mobile Anchors With Directional Antennas,” IEEE Sensors Journal, Vol. 11, Issue 7, pp.1607-1616, 2011
[10] Jehn-Ruey Jiang, Chih-Ming Lin, and Yi-Jia Hsu, “Localization with Rotatable Directional Antennas for Wireless Sensor Networks,” in Proceeding of International Conference on Parallel Processing Workshops, pp. 542-548, 2010.
[11] S. F. A. Shah, S. Srirangarajan, and a. h. Tewfik, “Implementation of a Directional Beacon-Based Position Location Algorithm in a Signal Processing Framework,” IEEE Transactions on Wireless Communications, Vol. 9, No. 3, pp. 1044-1053, 2010.
[12] Jehn-Ruey Jiang, Chih-Ming Lin, and Fong-I Lin, “ALRD: AoA Localization with RSSI Differences of Directional Antennas for Wireless Sensor Networks,” in Proceeding of International Conference on Information Society, pp.304-309, 2011.
[13] Paramvir Bahl and Venkata N. Padmanabhan, “RADAR: An In-Building RF-based User Location and Tracking System,” in Proceeding of IEEE INFOCOM, Vol.2, pp.775-784, 2000.
[14] Hongchun Li, Xiaoguang Zhao, and Min Tan, “A New Search Strategy of Radio Fingerprint Matching Method in Wireless Sensor Network,” in Proceeding of International Conference on Robot, Vision and Signal Processing (RVSP), pp. 18-22, 2011.
[15] CC2420 Data Sheet: 2.4 GHz IEEE 802.15.4 / ZigBee-ready RF Transceiver
[16] IEEE, Wireless Medium Access Control and Physical Layer Specifications for Low-Rate Wireless Personal Area Networks IEEE Std 802.15.4c-2009 (Amendment to IEEE Std 802.15.4-2006), pp. c1-21, 2009.
[17] http://en.wikipedia.org/wiki/Coefficient_of_determination
[18] Dragoş Niculescu and Badri Nath, “DV Based Positioning in Ad Hoc Networks,” Springer Telecommunication Systems journal, Vol. 22, Issue 1-4, pp.267-280, 2003.
[19] Linqing GUI, Anne WEI, and Thierry VAL, “A range-free localization protocol for wireless sensor networks,” in Proceeding of International Symposium on Wireless Communication Systems (ISWCS), pp. 496-500, 2012.
[20] Fuxiang Gong, Wang Qing, and Xiaoguo Zhang, “A new distance based algorithm for TDOA localization in cellular networks,” in Proceeding of International Conference on Computer Science and Information Technology (ICCSIT), Vol. 7, pp.502-505, 2010.
[21] Toshihiro Mogi and Tomoaki Ohtsuki, “TOA localization using RSS weight with path loss exponents estimation in NLOS environments,” in Proceeding of Asia-Pacific Conference on Communications (APCC), pp.1-5, 2008.
[22] Bryan N. Hood and Prabir Barooah, “Estimating DoA From Radio-Frequency RSSI Measurements Using an Actuated Reflector,” IEEE Sensors Journal, Vol 11, pp. 413-417. 2011.
[23] Hyo-Sung Ahn and Wonpil Yu, “Environmental-Adaptive RSSI-Based Indoor Localization,” IEEE Transactions on Automation Science and Engineering, Vol. 6, Issue 4, pp.626-633, 2009.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2012-11-29 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare