博碩士論文 965401020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:3.135.194.153
姓名 林紀賢(Chi-Hsien Lin)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 注入鎖定非線性單晶微波積體電路之研究
(Research on Injection-locking Nonlinear Monolithic Microwave Integrated Circuits)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在討論與發展採用注入鎖定技術的非線性單晶微波積體電路。首先,提出一個採用電抗補償技術的寬頻E類功率放大器,並實現於鉮化鎵0.5微米增強型/空乏型假晶高電子遷移率電晶體製程(0.5-m GaAs E/D-mode PHEMT)。由於利用電抗補償技術,提出E類功率放大器的頻寬可達87%。這是第一個使用電抗補償技術的全積體化E類功率放大器,而且與其他所發表的全積體化功率放大器相比,此電路達到最佳的優化指數及3 dB頻寬。為了更進一步降低驅動輸入功率,提出一個兩級寬頻且使用注入鎖定技術的E類功率放大器,並實現在鉮化鎵0.5微米增強型/空乏型假晶高電子遷移率電晶體製程上。使用注入鎖定的方法,功率放大器操作如同振盪器,且輸出訊號被鎖定至與輸入訊號相同的頻率,降低原先所需的輸入功率,以提高功率增益。另外,本篇論文採用自主電路(Autonomous circuit)來作非線性穩定度分析,並且開發一個系統化的注入鎖定E類功率放大器設計方法。在使用高斯最小頻移鍵(Gaussian minimum-shift keying, GMSK) 及64-正交振幅調變(Quadrature amplitude modulation, QAM)的輸入調變訊號下,仍具有高效率及良好的調變品質。
此外,本文也提出一個使用有限感抗射頻扼流圈(Radio frequency chock, RFC)的2.5 GHz E類功率振盪器,並使用鉮化鎵0.5微米增強型/空乏型假晶高電子遷移率電晶體製程實現。E類負載網路引入有限射頻扼流圈感值的分析,並開發一個簡單且有系統的E類功率振盪器設計步驟。為了讓E類負載網路操作在最高頻率(fmax,E)之上,將電晶體操作於飽和區,因此近似E類運作出現在交叉電流(bifurcated current)。所以本論文也提出一個24-GHz的E類功率振盪器,並且使用鉮化鎵0.15微米假晶高電子遷移率電晶體製程實現。這兩個所提出的E類功率振盪器的量測結果與最近所發表的功率振盪器相互比較,展現高效率及高功率輸出等優點。
利用環形自我注入方法,我們亦提出了一個八相位壓控振盪器結合八個反射式調變器在同一單晶片中。利用所提出的架構,反射式調變器可以當作一個振幅相位調變器,因此可以簡單且準確地量測出振幅與相位誤差。此技術還可以進一步使用在多相位壓控器振盪上。另外,提出一個使用自注入鎖定技術的正交壓控振盪器,並實現在0.18微米互補金屬氧化半導體製程上。使用此技術可達到低功率消耗與低的相位雜訊優點,與先前所發表的最佳正交壓控振盪器相比,此次所提出的自注入鎖定技術的正交壓控振盪器擁有最佳的優化指數及最低的相位雜訊。另外,為了更進一步將自注入鎖定技術應用在高頻,也成功使用90奈米互補金屬氧化半導體製程設計一個60 GHz自注入鎖定技術的正交壓控振盪器。從這些實驗可知,我們提出的自注入鎖定技術很適合在高性能的正交壓控振盪器及多相位壓控振盪器上。
最後,使用65奈米金屬氧化半導體製程的雙閘極元件來設計與分析一個兩級低雜訊放大器與一個串接注入四相位壓控振盪器。另外,也提出一個產生正交訊號的機制,並應用於所提出四相位壓控振盪器設計。利用雙閘極元件,所提出的兩級低雜訊放大器與一個正交壓控振盪器皆達到良好的特性。從這些實驗可知,雙閘極元件是適合應用在電路設計上,如低雜訊放大器、正交壓控振盪器以及其他高於20 GHz的射頻電路上。最後,我們總結這篇博士論文,並說明未來可研究發展方向。
摘要(英) Research on the nonlinear monolithic microwave integrated (MMIC) circuits using injection-locking technique is presented in this dissertation. A broadband class-E power amplifier (PA) using a reactance compensation technique is proposed using a 0.5-m GaAs enhancement/depletion pseudomorphic high-electron mobility transistor (E/D-mode PHEMT) process in Chapter 2. By using the reactance compensation technique, the bandwidth of the proposed class-E PA can achieves 87%. This is the first fully integrated microwave class-E PA with the reactance compensation technique, and also this work demonstrates the highest figure-of-merit (FOM) with the 3-dB bandwidth among all the reported fully integrated PAs. To further mitigate the input driving power, a two-stage broadband injection-locking class-E PA using a 0.5-m GaAs E/D-mode PHEMT process are also presented. The PA works as an oscillator whose output voltage is tuned at the input frequency. The proposed injection-locking PA achieves high power added efficiency (PAE) and high power gain. Besides, an autonomous circuit is also employed for nonlinear stability analysis, and the design procedure is summarized for the circuit implementation. Moreover, the proposed PA with Gaussian minimum-shift keying (GMSK) and 64-QAM modulation signals still demonstrates good performance, and it is suitable for the digital modulation schemes.
A 2.5-GHz class-E power oscillator (POSC) using a finite dc-feed inductance is proposed using a 0.5-m GaAs E/D-mode PHEMT process. The analysis of the class-E load network using finite dc-feed inductance is presented, and a systematic design procedure for the class-E POSC is developed. The class-E load network can be further operated above the class-E maximum frequency (fmax,E) as the core device is operated in the saturated region. Moreover, a 24-GHz class-E POSC using a 0.15-m GaAs E/D-mode PHEMT process is present in Chapter 3. The measured results of the two proposed class-E POSCs compared with the recently reported state-of-the-art POSCs are also summarized in this dissertation.
With a ring self-injection technique, an eight-phase voltage-controlled oscillator (VCO) with eight reflection-type modulators is presented in Chapter 4. The amplitude and phase errors can be easily and accurately evaluated using the proposed topology, because the reflection-type modulators can be performed as a switch or an amplitude-phase modulator. This technique will be further applied to the characterizations of other multi-phase VCOs. A self-injection-coupled quadrature voltage-controlled oscillator (SIC-QVCO) using a standard bulk 0.18-m complementary metal-oxide-semiconductor (CMOS) process has been successfully demonstrated. The proposed QVCO using a modified SIC method has a few advantages of low dc consumption and low phase noise. As compared with the previously reported state-of-the-art QVCOs, this SIC-QVCO features the lowest FOMs and phase noise. Besides, to further test the potential of the SIC technique in millimeter-wave (MMW) band, a 60-GHz SIC-QVCO using a 90-nm CMOS process has also been successfully designed and implemented. From these demonstrations, we can see that the proposed SIC method is suitable for the circuit designs of high performance QVCOs and multi-phase VCOs.
In Chapter 5, design and analysis of a two-stage cascade low noise amplifier (LNA) and bottom-series self-injection quadrature voltage-controlled oscillator (BS-QVCO) using a 65-nm CMOS dual-gate device are presented. A small-signal equivalent circuit of the dual-gate device is investigated for bandwidth. Besides, a mechanism of the quadrature signal generation using the dual-gate device is presented for the proposed QVCO design. By using the dual-gate device, the two-stage cascade LNA achieves wide 3-dB bandwidth with high gian and low noise figure, and the BS-QVCO also demonstrates good phase noise and good quadrature accuracy. The dual-gate CMOS device is suitable for the circuit design of high performance LNAs, QVCO, and other RF circuits above 20 GHz, especially for MMW applications. Finally, we summarize the concolusion and the future works in Chapter 6.
關鍵字(中) ★ 單晶微波積體電路
★ 功率放大器
★ 正交壓控振盪器
★ 雙閘極元件
★ 注入鎖定
關鍵字(英) ★ monolithic microwave integrated circuit
★ power amplifier
★ quadrature voltage-controlled oscillator
★ dual-gate device
★ injection-locking
論文目次 摘要 I
Abstract III
List of Figures XI
List of Tables XVII
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 Literatures Survey 2
1.3 Contributions 5
1.4 Dissertation Organization 7
Chapter 2 Broadband Injection-Locking Class-E Power Amplifier 9
2.1 Broadband Injection-Locking Class-E Power Amplifier 9
2.1.1 MMIC Process 9
2.1.2 Classification of Power Amplifier 10
2.1.3 Operation Principle of the Class-E Power Amplifier 14
2.1.4 Reactance Compensation Technique 19
2.1.5 Injection-locking Technique 20
2.2 A Broadband Class-E Power Amplifier 26
2.2.1 Circuit Design 26
2.2.2 Measurement Results and Disscussions 29
2.3 A Broadband Injection-locking Class-E Power Amplifier 33
2.3.1 Circuit Design 33
2.3.2 Measurement Results and Disscussions 37
2.4 Summary 47
Chapter 3 Microwave Class-E Power Oscillators Using Self-injection Technique 50
3.1 Class-E Power Oscillator 50
3.1.1 Power Oscillator 50
3.1.2 Optimum Operation Condition of Oscillation 52
3.1.3 Design Method for Class-E POSC 59
3.2 A 2.5-GHz class-E POSC using Finite DC-feed Inductance 62
3.2.1 MMIC Process 62
3.2.2 Circuit Design and Analysis 62
3.2.3 Measurement Results and Disscussions 67
3.3 A 24-GHz class-E POSC 70
3.3.1 MMIC Process 70
3.3.2 Maximum Operation Frequency of Class-E PA 70
3.3.3 Circuit Design 71
3.3.4 Measurement Results and Discussions 73
3.4 Summary 75
Chapter 4 Multi-phase Voltage-controlled Oscillator Using Ring Injection 78
4.1 Multi-phase Voltage-controlled Oscillator 78
4.1.1 MMIC Process 78
4.1.2 Method of Generating Multi-phase Signals 79
4.1.3 Measurement Method of Amplitude and Phase Errors 85
4.2 An Eight-phase Voltage-controlled Oscillator 94
4.2.1 Circuit Design 94
4.2.2 Measurement Results and Disscussions 97
4.3 A QVCO Using Self-injection Coupled Technique 103
4.3.1 Quadrature Signal Generation of SIC-QVCO 103
4.3.2 Circuit Design 106
4.3.3 Measurement Results and Discussions 111
4.4 A 60-GHz QVCO Using Source-injection Coupled Technique 118
4.4.1 Circuit Design 118
4.4.2 Measurement Results and Discussions 120
4.5 Summary 124
Chapter 5 65 nm CMOS Dual-gate Device for Ka-band High Gain Low Noise Amplifier and Low Phase Noise High Accuracy Quadrature Voltage-controlled Oscillator 128
5.1 Dual-gate Device 128
5.1.1 MMIC Process 128
5.1.2 Dual-gate Device Modeling 130
5.2 A 24-GHz Two-stage cascade LNA 137
5.2.1 Circuit Design 137
5.2.2 Measurement Results 143
5.3 The 25-GHz BS-QVCO 145
5.3.1 Circuit Design 145
5.3.2 Measurement Results 151
5.4 Summary 156
Chapter 6 Conclusions 159
Reference 162
Publication List 172
參考文獻 [1] H. Hashemi, X. Guan, and A. Hajimiri, “A fully integrated 24 GHz 8-path phased-array receiver in silicon,” in IEEE Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2004, pp. 390-391.
[2] X. Guan and A. Hajimiri, “A 24 GHz CMOS front-end,” in Eur. Solid-State Circuits Conf. Tech. Dig., Sept. 2002, pp. 155-158.
[3] E. Sonmez, A. Trasser, K. Schad, R. Abele, and H. Schumacher, “A single chip 24 GHz receiver front-end using a commercially available SiGe HBT foundry process,” in IEEE Radio Frequency Integrated Circuits Symp. Dig., Jun. 2002, pp. 159-162.
[4] B. Razavi, “A study of injection locking and pulling in oscillator,” IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1415-1424, Sept. 2004.
[5] K. Jurokawa, “Injection locking of microwave of solid-state oscillators,” Proc. IEEE, vol. 61, pp. 1336-1385, Oct. 1973.
[6] C.-J. Li, C.-H. Hsiao, F.-K. Wang, T.-S. Horng, and K.-C. Peng, “A rigorous analysis of a phase-locked oscillator under injection,” IEEE Trans. Microwave Theory Tech., vol. 58, no. 5, pp. 1391-1400, May. 2010.
[7] M.-C. Chen and C.-Y. Wu, “Design and analysis of CMOS subharmonic injection-locked frequency triplers,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 8, pp. 1391-1400, Aug. 2008.
[8] N. O. Sokal and A. D. Sokal, “Class E – A new class of high-efficiency tuned single-ended switching power amplifier,” IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-179, June 1975.
[9] N. Kumar, C. Prakash, A. Grebennikov, and A. Mediano, “High-efficiency broadband parallel-circuit class E RF power amplifier with reactance-compensation technique,” IEEE Trans. Microwave Theory Tech., vol. 56, no. 3, pp. 604-612, March. 2008.
[10] C. S. Aitchison, R. Davies, and P. J. Gibson, “A simple diode parametric amplifier design for use at S, C, and X Band,” IEEE Trans. Microwave Theory Tech., vol. 15, no. 1, pp. 22-31, Jan. 1967.
[11] C. S. Aitchison and R. V. Gelsthorpe, “A circuit technique for broadbanding the electronic tuning range of gunn oscillators,” IEEE J. Solid-State Circuits, vol. 12, no. 1, pp. 21-28, Sept. 1977.
[12] K.-C. Tsai, and P. R. Gray, “A 1.9-GHz, 1-W CMOS class-E power amplifier for wireless communication,” IEEE J. Solid-State Circuits, vol. 34, no. 7, pp. 962–970, July 1999.
[13] R. Brama, L. Larcher, A. Mazzanti, and F. Svelto, “A 30.5 dBm 48% PAE CMOS class-E PA with integrated balun for RF applications,” IEEE J. Solid-State Circuits, vol. 43, no. 8, pp. 1755–1762, Aug. 2008.
[14] P. Heydari, and Y. Zhang, “A novel high frequency, high-efficiency, differential class-E power amplifier in 0.18-m CMOS,” in Proc. International Symp., pp. 455–458, 2003.
[15] K. L. R. Mertens, and M. S. J. Steyaert, “A 700-MHz 1-W fully differential CMOS class-E power amplifier,” IEEE J. Solid-State Circuits, vol. 37, no. 2, pp. 137–141, Feb. 2002.
[16] H.-S. Oh, T. Song, E. Yoon, and C.-K. Kim, “A power-efficient injection-locked class-E power amplifier for wireless sensor network,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 4, pp.173 –175, Apr. 2006.
[17] J.-S. Paek, and S. Hong, “A 29 dBm 70.7% PAE injection-locked CMOS power amplifier for PWM digitized polar transmitter,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 11, pp.637 – 639, Nov. 2010.
[18] H. Wang, E. Lin, D. C. W. Lo, R. Lai, L. Tran, J. Cowles, Y. C. Chen, T. Block, P. H. Liu, and H. C. Yen, K. Stamper, “A monolithic 24-GHz frequency source using InP-based HEMT-HBT integration technology,” IEEE Radio Frequency Integrated Circuit Symp., pp. 79-81, June 1997.
[19] K. Ogawa, H. Ikeda, T. Ishizaki, K. Hashimoto, and Y. Ota, “25 GHz dielectric resonator oscillator using an AlGaAs/GaAs HBT,” Electron. Kett., vol. 25, no. 18, pp. 1514-1516, Aug. 1990.
[20] W.-K. Huang, Y.-A. Liu, C.-M. Wang, Y.-M. Hsin, C.-Y. Liu, and T.-J. Yeh, “Flip-chip assembled GaAs pHEMT Ka-band oscillator,” IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 1, pp. 67-69, Jan. 2007.
[21] B. Piernas, K. Nishikawa, T. Nakagawa, and K. Araki, “A compact and low-phase-noise Ka-band pHEMT-based VCO,” IEEE Trans. Microwave Theory Tech., vol. 51, no.3, pp. 778-783, Mar. 2003.
[22] S.-G. Park, J.-H. Kim, S.-W. Kim, K.-S. Seo, W.-B. Kim, and J.-I. Song, “A Ka-band MMIC oscillator utilizing a labyrinthine PBG resonator,” IEEE Microw. and Wireless Compon. Lett., vol. 15, no. 11, pp. 727-729, Nov. 2005.
[23] E. Juntunen, D. Dawn, S. Pinel, and J. Lasker, “A high-efficiency, high-power millimeter-wave oscillator using a feedback class-E power amplifier in 45 nm CMOS” IEEE Microw. and Wireless Compon. Lett., vol. 21, no. 8, pp. 430-432, Aug. 2011.
[24] C. L. Liu, “Impacts of I/Q imbalance on QPSK-OFDM-QAM detection,” IEEE Trans. Consumer Electron., pp. 984-989, Aug. 1998.
[25] H. Hashemi, X. Guan, A. Komijani, and A. Hajimiri, “A 24-GHz SiGe phase-array receiver-LO phase-shifting approach,” IEEE Trans. on Microwave Theory and Tech., pp. 614-626, Feb. 2005.
[26] “Optimization of Quadrature Modulator Performance,” Technical Notes and Articles, RF Micro Devices Inc.
[27] H.-Y. Chang, P.-S. Wu, T.-W. Huang, H. Wang, C. L. Chang, and J. Chern, “design and analysis of CMOS broad-band compact high-linearity modulators for Gigabit microwave/millimeter-wave application,” IEEE Trans. on Microwave Theory and Tech., pp. 20-30, Feb. 2006.
[28] H.-Y. Chang, Y.-H. Cho, M.-F. Lei, C.-S. Lin, T.-W. Huang, and H. Wang, “A 45-GHz quadrature voltage controlled oscillator with a reflection-type IQ modulator in 0.13-m CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2006, pp. 739-742.
[29] M. Chua, and K. W. Martin, “1 GHz programmable analog phase shifter for adaptive antennas,” in Proc. IEEE Custom Integrated Circuit Conf., May 1998, pp.11-14.
[30] J. J. Kim, and B. Kim, “A low-phase-noise CMOS LC oscillator with a ring structure,” in IEEE Int. Solid-State Circuit Conf. Tech. Dig., Feb. 2005, pp. 430-431.
[31] C.-A. Lin, J.-L. Kuo, K.-Y. Lin, and H. Wang, “A 24 GHz low power VCO with transformer feedback,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 75-78.
[32] C.-C. Li, T.-P. Wang, C.-C. Kuo, M.-C. Chuang, and H. Wang, “A 21 GHz complementary transformer coupled CMOS VCO,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 4, pp. 278-280, Apr. 2008.
[33] C.-K. Hsieh, K.-Y. Kao, J. R. Tseng, and K.-Y. Lin, “A K-band CMOS low power modified Colpitts VCO using transformer feedback,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2009, pp. 1293-1296.
[34] Y.-H. Kuo, J.-H. Tsai, and T.-W. Huang, “A 1.7-mW, 16.8% frequency tuning, 24-GHz transformer-based LC-VCO using 0.18-m CMOS technology,” in IEEE RFIC Symp. Dig., Jun. 2009, pp. 79-82.
[35] T.-H. Huang, and Y.-R. Tseng, “A 1 V 2.2 mW 7 GHz CMOS quadrature VCO using current-reuse and cross-coupled transformer-feedback technology,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 10, pp. 698-700, Oct. 2008.
[36] D. Baek, T. Song, E. Yoon, and S. Hong, “8-GHz CMOS quadrature VCO using transformer-based LC tank,” IEEE Microwave and Wireless Components Letters, vol. 13, no. 10, pp. 446-448, October 2003.
[37] S. Ko, J.-G. Kim, T. Song, E. Yoon, and S. Hong, “20 GHz integrated CMOS frequency sources with a quadrature VCO using transformers,” in IEEE RFIC Symp. Dig., Jun 2004, pp. 269–272.
[38] Alan W. L. Ng and Howard C. Luong, “A 1-V 17-GHz 5-mW CMOS quadrature VCO based on transformer coupling,” IEEE J. Solid-State Circuits, vol. 42, no. 9, pp. 1933-1941, January 2007.
[39] M. Hossain and A. Chan Carusone, “20 GHz low power QVCO and de-skew techniques in 0.13-m digital CMOS,” in IEEE Custom Integrated Circuits Conf. pp. 447-450, 2008.
[40] S. Hackl, J. Bock, G. Ritzberger, M. Wurzer, and A. L. Scholtz “A 28-GHz monolithic integrated quadrature oscillator in SiGe Bipolar Technology,” IEEE J. Solid-State Circuits, vol. 38, no. 1, pp. 135-137, January 2003.
[41] W. L. Chan, H. Veenstra, and J. R. Long, “A 32GHz quadrature LC-VCO in 0.25μm SiGe BiCMOS technology,” in 2005 Int. Solid-State Circuit Conf. Dig., San Francisco, USA, pp. 538-539.
[42] C.-H. Lin and H.-Y. Chang, “A low phase noise low DC power quadrature voltage-controlled oscillator using a 0.18-m CMOS process,” in Proc. EuMIC, pp. 28-29, Sept. 2009.
[43] C.-L. Yang and Y.-C. Chiang, “Low phase-noise low-power CMOS VCO constructed in current-reused configuration,” IEEE Microw. and Wireless Compon. Lett., vol. 18, no. 2, pp. 136-138, Feb. 2008.
[44] H.-Y. Chang, and Y.-T. Chiu, “K-band CMOS differential and quadrature voltage-controlled oscillators for low phase-noise and low-power applications,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 46–59, Jan. 2012.
[45] S.-Y. Lee and C.-Y. Chen, “Analysis and digital of a wide-tuning-range VCO with quadrature outputs,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 55, no. 12, pp. 1209-1213, Dec. 2008.
[46] H. C. Choi, S. B. Shin, S.-G. Lee, “A low-phase noise LC-QVCO in CMOS technology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 11, pp. 540-542, Nov. 2004.
[47] R. Fujimoto, K. Kojima, and S. Otaka, “A 7-GHz 1.8-dB NF CMOS low-noise amplifier,” IEEE J. Solid-State Circuits, vol. 3, no. 7, pp. 852-856, July 2002.
[48] W. R. Deal, M. Biedenbender, P. H. Lin, J. Uyeda, M. Siddiqui, and R. Lai, “Design and analysis of broadband dual-gate balanced low-noise amplifiers,” IEEE J. Solid-State Circuits, vol. 42, no. 10, pp. 2107-2115, Oct. 2007.
[49] T. Kashiwa, T. Katoh, T. Ishida, Y. Kojima, and Y. Mitsui, “A high-performance Ka-band monolithic variable-gain amplifier using dual-gate HEMTs,” IEEE Microw. Guided Wave Lett., vol. 7, no. 8, pp. 251-252, Aug. 1997.
[50] H.-Y. Chang, and K.-H. Liang, “A 0.18-m dual-gate CMOS device modeling and applications for RF cascade circuits,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 01, pp. 116-124, Jan. 2011.
[51] M. Törmänen and H. Sjöland, “A 26-GHz LC-QVCO in 0.13-m CMOS,” in Proc. Asia-Pacific Microw. Conf., 2007, pp. 1769-1772.
[52] M. Törmänen and H. Sjöland, “A 24-GHz LC-QVCO in 130-nm CMOS using 4-bit switched tuning,” in Proc. IEEE Int. Microelectron. Conf., Sharjah, U.A.E., 2008, pp. 462-465.
[53] R. Banin, O. Degani, and E. Socher, “V-band low phase noise QVCO in 90 nm CMOS technology using a gate-connected tank,” Electron. Lett., vol. 48, no. 17, pp. 1046-1048, 2012.
[54] M. Törmänen and H. Sjöland, “A 24-GHz quadrature receiver front-end in 90-nm CMOS,” in Proc. Asia-Pacific Microw. Conf., Dec. 2007, pp. 1769-1772.
[55] S.-L. Jang, C.-J. Huang, C.-C. Liu, and C.-W. Hsue, “A 0.22 V quadrature VCO in 90 nm CMOS Process,” IEEE Microw. and Wireless Compon. Lett., vol. 19, no. 9, pp. 566-568, Feb. 2009.
[56] E.-S. A. Kytonaki and Y. Papananos, “A low-voltage differentially tuned current-adjusted 5.5-GHz quadrature VCO in 65-nm CMOS technology,” IEEE Transactions on Circuit and System II, Exp. Briefs, vol. 58, no. 5. pp. 254-258. May, 2009.
[57] C.-H. Lin, and H.-Y. Chang, “A low-phase-noise CMOS quadrature voltage-controlled oscillator with self-injeciton-coupled technique,” IEEE Transactions on Circuit and System II, Exp. Briefs. vol. 59, no. 10, pp. 623-627, Oct. 2012.
[58] W. Abey, T. Moriuchi, R. Hajji, T. Nakamura, Y. Nonaka, E. Mitani, W. Kennan, and H. Dang, “A single supply high performance PA MMIC for GSM handsets using quasi-enhancement mode PHEMT,” 2001 IEEE International Microwave Symposium Digest, May, 2001, pp. 923-926.
[59] A. Suárez, and R. Queré, Global Stability Analysis of Microw. Circuits, Boston, MA: Artech House, 2003, Chapter 2.
[60] N.-C. Kuo, P.-S. Chi, A. Suárez, J.-L. Kuo, P.-C. Huang, Z.-M. Tsai, and H. Wang, “DC/RF hysteresis in microwave pHEMT amplifier induced by gate current-diagnosis and elimination,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 11, pp. 2919–2930, Nov. 2011.
[61] C.-H. Lin, and H.-Y. Chang, “A high efficiency broadband class-E power amplifier using a reactance compensation technique,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 9, pp.507–509, Sept. 2010.
[62] WIN Semiconductors, “0.5 μm InGaAs pHEMT enhancement / depletion-model device (E/D-mode) device model handbook,” ver.1.2.2, June, 2007.
[63] S. C. Cripps, RF Power Amplifier for Wireless Communication. Boston, MA: Artech House, 1999.
[64] J. Rogers and C. Plett, Radio Frequency Integrated Circuit Design, Artech House, 2003.
[65] G. D. Vendelin, Microwave Circuit Design Using Linear and Nonlinear Techniques, second ed., John Wiley & son, 2005, Chapter 9.
[66] C. Yoo, and Q. Huang, “A common-gate switched 0.9-W class-E power amplifier with 41% PAE in 0.25-m CMOS,” IEEE J. Solid-State Circuits, vol. 36, no. 5, pp. 823–830, May 2003.
[67] N. O. Sokal, “Class-E RF power amplifier,” QEX, no. 204, pp. 9-20, Jan./ Feb. 2001, pp. 9–20.
[68] I. Aoki, S. D. K., D. B. Rutledge,and A. Hajimiri, “Distributed active transformer—a new power-combining and impedance-transformation technique,” IEEE Trans. Microw. Theory Tech., vol. 50, no. 01, pp. 316–331, Jan. 2002.
[69] A. Grebennikov, RF and Microwave Transmitter Design, John Wiley & son, 2011, Chapter 11.
[70] A. V. Grebennikov and H. Jaeger, “Class E with Parallel Circuit – A new challenge for high-efficiency RF and microwave power amplifiers,” 2002 IEEE International Microwave Symposium Digest, June, 2002, pp. 1627-1630.
[71] G. Gonzalez, Microwave Transistor Amplifiers: Analysis and Design, Englewood Cliffs, N.J.: Prentice-Hall, 1984, Chapter 5.
[72] “Sonnet User’s Manual,” Release 12.54, Sonnet Software Inc., North Syracuse, NY, Nov. 2009.
[73] A. Adler, “A study of locking phenomena in oscillators,” in Proc. of the IEEE, vol. 61, no. 10, pp. 1380–1385, Oct. 1973.
[74] H.-Y. Chang, “Design of broadband highly linear IQ modulator using a 0.5-μm E/D-PHEMT process for millimeter-wave applications” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 7, pp. 491–493, July 2008.
[75] J. Portilla, H. Garcia, and E. Artal “High power-added efficiency MMIC amplifier for 2.4 GHz wireless communications,” IEEE Journal of Solid-State Circuits, vol. 34, no. 1 pp. 120–123, Sept. 1999.
[76] I. J. Bahl, E. L. Griffin, A. E. Geissberger, C. Andricos, and T. F. Brukiewa, “Class-B power MMIC amplifiers with 70 percent power added efficiency,” IEEE Trans. Microw. Theory Tech., vol. 37, no. 9, pp. 1315–1320, Sept. 1989.
[77] K. Tateoka, A. Sugimura, H. Furukawa, N. Yoshikawa, and K. Kanazawa, “A GaAs MCM power amplifier of 3.6 V operation with high efficiency of 49% for 0.9 GHz Digital Cellular Phone Systems,” IEEE Trans. Microw. Theory Tech., vol. 43, no. 11, pp. 2539–2542, Sept. 1995.
[78] C.-H. Lin, H.-Z. Liu, C.-K. Chu, H.-K. Huang, C.-C. Liu, C.-H. Chang, C.-L. Wu, C.-S. Chang, and Y.-H. Wang, “A single supply, high linearity 2-W PA MMIC for WLAN applications using quasi-enhancement mode PHEMTs,” IEEE Microw. and Wireless Compon. Lett., vol. 16, no. 11, pp. 618–620, Nov. 2006.
[79] Q. Ma, M. R. Haider, S. Yuan, S. K. Islam, “Power-oscillator based high efficiency inductive power-link for transcutaneous power transmission,” 53rd IEEE Int. Medwest Symp. on Circuits and Systems, pp. 537-540, Aug. 2010.
[80] D. M. Klymyshyn, S. Kumar, and A. Mohammadi, “Direct GMSK modulation with phase-locked power oscillator,” IEEE Trans. Vehicular Tech., pp.1616-1625, vol. 48, no. 5, Sept. 1999.
[81] T. Liebermann and M. Tiebout, “A low phase noise, differentially tuned, 1.8 GHz power VCO with an ESD-compatible 14 dBm output stage in standard digital CMOS,” in Proc. ESSIRC, pp. 512-515, 2001.
[82] I. D. Avramov, S. R. Gilbert, and R. Ruby, “1.5-GHz voltage controlled oscillator with 3% tuning bandwidth using a two-pole DSBAR filter,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control, vol. 58, no. 5, May 2011.
[83] N. Deltimple, Y. Deval, D. Belot, and E. Kerherve, “Design of class-E power VCO in 65 nm CMOS technology : application to RF transmitter architecture,” IEEE Int. Symp. on Circuits and Systems, pp. 984-987, May 2008.
[84] R. Ludwig and P. Bretchko, RF Circuit Design Theory and Applications, Prentice-Hall, 2000.
[85] M. Kazimierczuk, “A new approach to the design of tuned power oscillators,” IEEE Transactions on Circuit and System I, vol. CAS-29, no. 4, pp. 261-267, Apr. 2012.
[86] C. H. Lin, W.-P. Li, H.-Y. Chang, “A fully integrated 2.4-GHz 0.5-W high efficiency class-E voltage controlled oscillator in 0.15-m PHEMT process,” 2011 Asia-Pacific Microwave Conference Proceedings, pp. 864-867.
[87] S. Jeon, A. Suarez, and D. B. Rutledge, “Nonlinear design technique for high power switching-mode oscillators,” IEEE Trans. Microwave Theory Tech., vol. 54, no.10, pp. 3630-3640, Oct. 2006.
[88] S. Jee, J. Moon, J. Kim, J. Son, and B. Kim, “Switching behavior of class-E power amplifier and its operation above maximum frequency,” IEEE Trans. Microwave Theory Tech., vol. 60, no.1, pp. 89-98, Jan. 2012.
[89] E. Juntunen, D. Dawn, S. Pinel, and J. Lasker, “A high-efficiency, high-power millimeter-wave oscillator using a feedback class-E power amplifier in 45 nm CMOS” IEEE Microw. and Wireless Compon. Lett., vol. 21, no. 8, pp. 430-432, Aug. 2011.
[90] H. Xu, C. Sanabria, S. Heikman, S. Keller, U. K. Mishra, and R. A. York, “High power GaN oscillators using field-plated HEMT structure, ” IEEE MTT-S. International Microwave Symposium Digest, pp.1345-1348, June 2005.
[91] C. -H. Lee, A. Sutono, and J. Laskar, “Development of a high-power and high efficiency HBT MMIC VCO,” IEEE Radio and Wireless Conference, pp.157-160, Aug. 2001.
[92] C. Florian, P. A. Reaverso, M. Feudale and F. Filicori, “A C-band GaAs-pHEMT MMIC low phase noise VCO for space applications using a new cyclostationary nonlinear noise model,” IEEE MTT-S. International Microwave Symposium Digest, pp.284-288, May 2010.
[93] K. Ogawa, H. Ikeda, T. Ishizaki, K. Hashimoto, and Y. Ota, “25 GHz dielectric resonator oscillator using an AlGaAs/GaAs HBT,” Electron. Lett., vol. 25, no. 18, pp. 1514-1516, Aug. 1990.
[94] W.-K. Huang, Y.-A. Liu, C.-M. Wang, Y.-M. Hsin, C.-Y. Liu, and T.-J. Yeh, “Flip-chip assembled GaAs pHEMT Ka-band oscillator,” IEEE Microw. and Wireless Compon. Lett., vol. 17, no. 1, pp. 67-69, Jan. 2007.
[95] B. Piernas, K. Nishikawa, T. Nakagawa, and K. Araki, “A compact and low-phase-noise Ka-band pHEMT-based VCO,” IEEE Trans. Microwave Theory Tech., vol. 51, no.3, pp. 778-783, Mar. 2003.
[96] S.-G. Park, J.-H. Kim, S.-W. Kim, K.-S. Seo, W.-B. Kim, and J.-I. Song, “A Ka-band MMIC oscillator utilizing a labyrinthine PBG resonator,” IEEE Microw. and Wireless Compon. Lett., vol. 15, no. 11, pp. 727-729, Nov. 2005.
[97] D. Axelrad, E. de Foucauld, M. Boasis, P. Martin, P. Vincent, M. Belleville, and F. Gaffiot, “A multi-phase 10 GHz QVCO in CMOS/SOI for 40 Gbits/s SONET OC-768 clock and data recovery circuit,” in IEEE Radio Frequency Integrated Circuit Symp. Dig., June 2005, pp. 573-576.
[98] Y.-T. Chiu, Research on Low Power Low Phase Noise Differential and Quadrature Monolithic Monolithic Microwave Integrated Circuit VCOs, M.S. Thesis, Graduate Institute of Electrical Engineer, National Central University, 2011.
[99] F. Behbahani, Y. Kishigami, J. Leete, and A. A. Abidi, “CMOS mixers and polyphase filters for large image rejection,” IEEE J. Solid-State Circuits, vol. 36, no. 6, pp. 873-887, Jun. 2001.
[100] M. S. J. Steyaert, J. Janssens, B. De Muer, M. Borremans, and N. Itoh, “A 2-V CMOS cellular transceiver front-end,” IEEE J. Solid-State Circuits, vol. 35, no. 12, pp. 1895-1907, Dec. 2000.
[101] A. Rofougaran, J. Rael, M. Rofougaran, A. Abidi, “A 900 MHz LC-oscillator with quadrature outputs,” in 1996 Int. Solid-State Circuit Conf. Dig., San Francisco, USA, pp. 392-393.
[102] W. Z. Chen, C. L. Kuo, and C. C. Liu, “10 GHz quadrature-phase voltage controlled oscillator and prescaler,” IEEE 29th European Solid-State Circuits Conf., pp. 361-364, Sept. 2003.
[103] P. Andreani, A. Bonfanti, L. Romano, and C. Samori, “Analysis and design of a 1.8-GHz CMOS LC quadrature VCO,” IEEE J. Solid-State Circuits, vol. 37, no. 12, pp. 1737-1747, Dec. 2002.
[104] J. Cabanillas, J. M. Lopez-Villegas, and G. M. Rebeiz, “A 900 MHz low phase noise CMOS quadrature oscillator,” IEEE RFIC Symp., Seattle, Washington, USA, pp. 63-66, 2002.
[105] P. Andreani, “A 2 GHz, 17% tuning range quadrature CMOS VCO with high figure-of-merit and 0.6° phase error,” in Proc. IEEE Eur. Solid-State Circuits Conf., Sept. 2002, pp. 815-818.
[106] T. H. Morshed, D. D. Lu, W. Yang, M. V. Dunga, X. Xi, J. He, W. Liu, Kanyu, M. Cao, X. Jin, J. J. Ou, M. Chan, A. M. Niknejad, C. Hu, BSIM4v4.7 MOSFET Model – User’s Manual. Berkeley, CA: Univ. California at Berkeley, 2011.
[107] Y. Zhang, Phase Noise Suppression Techniques for 5-6 GHz Oscillator Design, M.S. Thesis, Graduate Institute of Electrical Engineer, Washington State University, 2007.
[108] A. Jannesari and M. Kamarei, “Source-injection serial coupled CMOS LC quadrature VCO” IEICE Electron. Express, vol. 4, no. 14, pp. 467-471, 2007.
[109] S. Hackl, J. Böck, G. Ritzberger, M. Wurzer, and A. L. Scholtz, “A 28-GHz monolithic integrated quadrature oscillator in SiGe bipolar technology,” IEEE J. Solid-State Circuits, vol. 38, pp. 135–137, Jan. 2003.
[110] F. Ellinger and H. Jackel, “38-43 GHz quadrature VCO on 90nm VLSI CMOS with feedback frequency tuning,” in IEEE MTT-S Int. Microwave Symp. Dig., Jun. 2005, pp. 1701–1703.
[111] Y.-C. Chang, Y.-C. Chiu, S.-G. Lin, Y.-Z. Juang, and H.-K. Chiou, “High phase accuracy on-wafer measurement for quadrature voltage-controlled oscillator,” in Proc. EuMC, pp. 340-343, Oct. 2007.
[112] C. C. Ho, C. W. Kuo, C. C. Hsiao, and Y. J. Chan, “A 2.4 GHz low phase noise VCO fabricated by 0.18-m pMOS technologies,” 2003 International Symp. VLSI Technology, System and Application, Oct. 2003, pp.144-146.
[113] C.-H. Lin, and H.-Y. Chang, “An eight-phase voltage controlled oscillator with reflection-type modulators in 0.18-m CMOS technology,” in IEEE MTT-S Int. Microwave Symp. Digest, pp. 1465-1468, June 2008.
[114] K. Scheir, S. Bronckers, J. Borremans, P. Wambacq, and Y. Rolain, “A 52 GHz phased-array receiver front-end in 90 nm digital CMOS”, IEEE J. Solid-State Circuits, vol. 43, no.12, Dec. 2008.
[115] P. Sakian, E. v. d. Heijden, H. M. Cheema, R. Mahmoudi, A. v. Roermund, “A 57-63 GHz quadrature VCO in CMOS 65 nm,” in 4th European Microwave Integrated Circuits Conference Digest, Rome, Italy, Oct. 2009.
[116] A. Barghouthi, A. Krause, C. Carta and F. Ellinger, “Design and characterization of a V-Band quadrature VCO based on a common-collector SiGe colpitts VCO,” Compound Semiconductor Integrated Circuit Symp. (CSICS), pp.1-3, 2010.
[117] Y. A. Khalaf, “Systematic optimization technique for MESFET modeling,” Ph.D Dissertation, Electrical Engineering, Virginia Polytechnic Inst. and State Univ., Virginia, USA, 2000.
[118] X, Fan, H. Zhang, and E. S. Sinencio, “A noise reduction and linearity improvement technique for a differential cascade LNA,” IEEE J. Solid-State Circuits, vol. 43, no. 3, pp. 588-599, Mar. 2008.
[119] W.-C. Wang, Z.-D. Huang, G. Carchon, A. Mercha, S. Decoutere, W. D. Raedt, C.-Y. Wu, “A 1 V 23 GHz low-noise ampilier in 45 nm planar bulk-CMOS technology with high-Q above-IC inductors,” IEEE Microw. and Wireless Compon. Lett., vol. 19, no. 5, pp. 326-328, May. 2009.
[120] L. Aspemyr, H. Jacobsson, M. Bao, H. Sjoland, M. Ferndahl, and G. Carchon, “A 15 GHz and a 20 GHz low noise amplifier in 90 nm RF-CMOS,” in Silicon Monolith. Integr. Circuits RF Syst. (SiRF), Tech. Dig., Jan. 2006, pp. 387-390.
[121] E. Adabi, B. Heydari, M. Bohsali, and A. M. Niknejad, “30 GHz CMOS low noise amplifier,” in Proc. IEEE RFIC Symp., 2007, pp. 625-628.
[122] M. A. T. Sanduleanu, G. Zhang, and J. R. Long, “31-34 GHz low noise amplifier with on-chip microstrip lines and inter-stage matching in 90-nm baseline CMOS, in Proc. IEEE RFIC Symp., 2006, pp.143-145.”
[123] W.-Han Cho, and Shawn S. H. Hsu, “An ultra-low-power 24 GHz low-noise amplifier using 0.13 m CMOS technology,” IEEE Microw. and Wireless Compon. Lett., vol. 20, no. 12, pp. 681-683, Dec. 2010.
[124] Y. Su, and K. K. O, “An 800-W 26-GHz CMOS tuned amplifier,” in Proc. IEEE RFIC Symp., 2006, pp. 151-154.
[125] S.-C. Shin, M.-D. Tsai, R.-C. Liu, K.-Y. Lin, and H. Wang, “A 24-GHz 3.9-dB NF low-noise amplifier using 0.18 m CMOS technology,” IEEE Microw. and Wireless Compon. Lett., vol. 15, no. 7, pp. 448-450, July. 2005.
[126] Y.-L. Wei, Shawn S. H. Hsu, and J.-D. Jin, “A low-power low-noise amplifier for K-band applications,” IEEE Microw. and Wireless Compon. Lett., vol. 19, no. 2, pp. 116-118, Feb. 2009.
[127] A. Sayag, “A 25 GHz 3.3 dB NF low noise amplifier based upon slow wave transmission lines and the 0.18 m CMOS technology,” in Proc. IEEE RFIC Symp., 2008, pp. 373-376.
[128] P. Andreani and X. Wang, “On the phase-noise and phase-error performances of multiphase LC CMOS,” IEEE J. Solid-State Circuits, vol. 39, no. 11, pp. 1883-1893, Nov. 2004.
[129] V. Aparin, and L. E. Larson, “Modified derivative superposition method for linearizing FET low-noise amplifiers,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 02, pp. 571-581, Feb. 2005.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2012-11-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明