博碩士論文 955401022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.218.155.139
姓名 莊淳富(Chun-Fu Chuang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 渾沌系統之有限時間同步化設計
(The Finite-Time Synchronization Design for Chaotic Systems)
相關論文
★ 直接甲醇燃料電池混合供電系統之控制研究★ 利用折射率檢測法在水耕植物之水質檢測研究
★ DSP主控之模型車自動導控系統★ 旋轉式倒單擺動作控制之再設計
★ 高速公路上下匝道燈號之模糊控制決策★ 模糊集合之模糊度探討
★ 雙質量彈簧連結系統運動控制性能之再改良★ 桌上曲棍球之影像視覺系統
★ 桌上曲棍球之機器人攻防控制★ 模型直昇機姿態控制
★ 模糊控制系統的穩定性分析及設計★ 門禁監控即時辨識系統
★ 桌上曲棍球:人與機械手對打★ 麻將牌辨識系統
★ 相關誤差神經網路之應用於輻射量測植被和土壤含水量★ 三節式機器人之站立控制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本博士論文針對一類渾沌系統提出一套估測不變集 (Invariant Set) 與解集合 (Solution Bound) 的方法,並提出三種控制方法論,確保主僕系統同步化能夠被實現,此外以模糊控制法則、非線性控制法則與線性控制法則,分別實現於廣義渾沌系統 (Generalized Chaotic System)、聯合渾沌系統 (Unified Chaotic System) 與廣義羅倫茲渾沌系統 (Generalized Lorenz Chaotic System)。首先藉由已導出的不變集與解集合之輔助,使得指數同步化控制器能以簡單的線性控制被實現。接著,基於Lyapunov定理、強健控制及有限時間穩定度概念,所提出的三種有限時間同步化控制方法已被實現。在模糊控制設計方面,Takagi–Sugeno 模糊模型被用來精確描述廣義主僕渾沌系統,且具有雜訊衰減能力的 H∞ 有限時間同步化控制器也已被合成,成功實現有限時間主僕同步化。在非線性控制設計上,具有強健性的非線性控制器已被設計,以確保系統在具有未知項的形況下,依然能夠成功實現有限時間主僕同步化。在線性控制器的設計上,藉由解集合的輔助,已成功設計出簡單的線性控制器,較值得一提的是該系統能夠事先指定收斂時間,並保證於規定時間內完成有限時間主僕同步化。所有設計的有限時間同步控制器,皆具有兩項可調參數,即指數收斂率與有限時間收斂率。此外基於模糊模型的有限時間同步控制器已被成功應用於保密通訊,並藉由FPGA與電腦設備,將保密系統實現於實際硬體電路上。最後輔以數值範例加以說明,其模擬結果已證明所提出之有限時間同步控制方法具備有效性與正確性,且成功地以實際實驗將保密通訊系統實現於硬體電路上。
摘要(英) This dissertation presents an approach to estimate the invariant set and solution bound for a class of chaotic system, and proposes three methods, including fuzzy control, nonlinear and linear control to achieve master-slave synchronization (MSS) for generalized chaotic system, unified chaotic system and generalized Lorenz chaotic system, respectively. First of all, since the invariant set and solution bound are derived, the exponential synchronization can be achieved using a simple linear control law which is very easy implemented. Subsequently, based on Lyapunov theory, robust control, and the concept of the finite–time stability, three methods are proposed to achieve the finite-time synchronization (FTS). In fuzzy control design, Takagi–Sugeno (T–S) fuzzy models are utilized to exactly represent the master and slave chaotic systems, and the H∞ FTS controller is synthesized to achieve FTS with the minimum disturbance attenuation level. In nonlinear control design, the nonlinear controller is synthesized to achieve robust FTS for a class of uncertain unified chaotic system. In the linear control design, based on the auxiliary of solution bound, a simple linear control law is proposed to achieve FTS within a pre–specified convergence time. In addition, all of the proposed FTS controllers are with two adjustable parameters, namely, exponential convergence rate and finite–time convergence rate. Finally, the fuzzy–model–based FTS is applied to secure communication, and its hardware implementation with a field– programmable gate array (FPGA) chip and a personal computer is realized too. Moreover, simulated examples are given to show the feasibility and correctness of the proposed control criteria, and the proposed methods are successfully verified by the practical experiments.
關鍵字(中) ★ 有限時間同步化
★ 渾沌系統
★ 模糊控制
★ 非線性控制
★ 保密通訊
關鍵字(英) ★ Finite-time synchronization
★ Chaotic systems
★ Fuzzy control
★ Nonlinear control
★ Secure communication
論文目次 摘要.................................................... I
Abstract................................................II
Acronyms................................................III
Nomenclature............................................V
List of Figures and Table...............................VIII
Chapter 1 Introduction....................................1
1.1 Background and Motivation.......................1
1.2 Review of Previous Works........................3
1.3 Organization and Main Tasks.....................5
Chapter 2 Invariant Set, Solution Bound and Linear Synchronization Control for Chaotic System..............7
2.1 Preliminary.....................................7
2.2 System Description and Problem Formulation......8
2.3 Estimation of Invariant Set and Solution Bound..10
2.4 Synchronization Design Based on Solution Bound..14
2.5 Numerical Examples..............................18
2.6 Summary.........................................22
Chapter 3 Finite–Time Synchronization Design and Control for Chaotic Systems.............................23
3.1 Preliminary.....................................23
3.2 System Description and Problem Formulation......24
3.2.1 Generalized chaotic system........................24
3.2.2 Unified chaotic system............................25
3.2.3 Generalized Lorenz chaotic system.................26
3.2.4 Some preliminary definitions and lemmas...........28
3.3 Fuzzy Model Based FTS for Generalized Chaotic System ................................................29
3.3.1 Fuzzy modeling and controller synthesis.........29
3.3.2 Simulation result...............................37
3.4 Nonlinear Control Based FTS for Unified Chaotic System ................................................48
3.4.1 Nonlinear control synthesis.....................49
3.4.2 Simulation results..............................52
3.5 Linear Control Based FTS for Generalized Lorenz Chaotic System..........................................58
3.5.1 Linear control synthesis........................59
3.5.2 Simulation results..............................63
3.6 Summary.........................................68
Chapter 4 Application for Secure Communication....69
4.1 Preliminary.....................................69
4.2 Implementation on A Secure Communication System.70
4.2.1 Hardware structure description and implementation of secure communication.................................70
4.2.2 Experimental results............................74
4.3 Summary.........................................78
Chapter 5 Conclusion and Future Works.............80
5.1 Conclusion......................................80
5.2 Future Works....................................81
References..............................................82

參考文獻 [1] D. Viswanath, “The fractal property of the Lorenz attractor,” Physica D, vol. 190, pp. 115–128, 2004.
[2] J. Lü and J. Lu, “Controlling uncertain Lü system using linear feedback,” Chaos Solitons & Fractals, vol. 17, pp. 127 – 133, 2003.
[3] T. Ueta and G. Chen, “Bifurcation analysis of Chen’s equation,” International Journal of Bifurcation and Chaos, vol. 10, pp. 1917 – 1931, 2000.
[4] J. A. K. Suykens, P. F. Curran, and L. O. Chua, “Robust synthesis for master–slave synchronization of Lur’e systems,” IEEE Transactions on Circuits and Systems I–Regular Papers, vol. 46, pp. 841–850, 1999.
[5] Y. J. Sun, “A simple observer design of the generalized Lorenz chaotic systems,” Physics Letters A, vol. 374, pp. 933–937, 2010.
[6] X. Y. Wang and J. M. Song, “Synchronization of the unified chaotic system,” Nonlinear Analysis, vol. 69, pp. 3409–3416, 2008.
[7] Y. J. Sun, “An exponential observer for the generalized Rössler chaotic system,” Chaos Solitons & Fractals, vol. 40, pp. 2457–2461, 2009.
[8] A. Uçar, K. E. Lonngren, and E. W. Bai, “Synchronization of chaotic behavior in nonlinear Bloch equations,” Physics Letters A, vol. 314, pp. 96–101, 2003.
[9] D. Abergel, “Chaotic solutions of the feedback driven Bloch equations,” Physics Letters A, vol. 302, pp. 17–22, 2002.
[10] C. D. Li and X. F. Liao, “Lag synchronization of Rössler system and Chua circuit via a scalar signal,” Physics Letters A, vol. 329, pp. 301–308, 2004.
[11] H. H. Tsai, C. C. Fuh, and C. N. Chang, “A robust controller for chaotic systems under external excitation,” Chaos Solitons & Fractals, vol. 14, pp. 627 – 632, 2002.
[12] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,” Physical Review Letters, vol. 64, pp. 821–824, 1990.
[13] R. Raoufi and A. S. I. Zinober, “Smooth adaptive sliding mode observers in uncertain chaotic communication,” International Journal of Systems Science, vol. 38, pp. 931–942, 2007.
[14] E. J. Hwang, C. H. Hyun, E. Kim, and M. Park, “Fuzzy model based adaptive synchronization of uncertain chaotic systems: robust tracking control approach,” Physics Letters A, vol. 373, pp. 1935–1939, 2009.
[15] A. Uçar, K. E. Lonngren, and E. W. Bai, “Synchronization of the unified chaotic systems via active control,” Chaos Solitons & Fractals, vol. 27, pp. 1292–1297, 2006.
[16] B. Wang and G. Wen, “On the synchronization of a class of chaotic systems based on backstepping method,” Physics Letters A, vol. 370, pp. 35–39, 2007.
[17] W. Chang, J. B. Park, Y. H. Joo, and G. Chen, “Static output–feedback fuzzy controller for Chen’s chaotic system with uncertainties,” Information Sciences, vol. 151, pp. 227–244, 2003.
[18] J. H. Park, “On synchronization of unified chaotic systems via nonlinear control,” Chaos Solitons & Fractals, vol. 25, pp. 699–704, 2005.
[19] L. Wu and S. Zhu, “Coexistence and switching of anticipating synchronization and lag synchronization in an optical system,” Physics Letters A, vol. 315, pp. 101–108, 2003.
[20] Y. N. Li, L. Chen, Z. S. Cai, and X. Z. Zhao, “Experimental study of chaos synchronization in the Belousov–Zhabotinsky chemical system,” Chaos Solitons & Fractals, vol. 22, pp. 767–771, 2004.
[21] Z. Shi, S. H. Hong, and K. S. Chen, “Experimental study on tracking the state of analog Chua’s circuit with particle filter for chaos synchronization,” Physics Letters A, vol. 372, pp. 5575–5580, 2008.
[22] Y. Maeda, E. Yagi, and H. Makino, “Synchronization with low power consumption of hardware models of cardiac cells,” Biosystems, vol. 79, pp. 125–131, 2005.
[23] B. Jovic and C. P Unsworth, “Fast synchronization of chaotic maps for secure chaotic communications,” Electronics Letters, vol. 46, pp. 49–50, 2010.
[24] Y. Tang, “Terminal sliding mode control for rigid robots,” Automatica, vol. 34, pp. 51–56, 1998.
[25] H. Wang, Z. Z. Han, Q. Y. Xie, and W. Zhang, “Finite–time chaos synchronization of unified chaotic system with uncertain parameters,” Communications in Nonlinear Science and Numerical Simulation, vol. 14, pp. 2239–2247, 2009.
[26] D. Xiao, H. Yang, and S. Zhou, “Extraction of 40 Hz EEG bursts for chaos analysis of brain function,” IEEE Engineering in Medicine and Biology Magazine, vol. 16, pp. 27–32, 1997.
[27] B. Hasselblatt and A. Katok, A First Course in Dynamics: with a Panorama of Recent Developments, Cambridge University Press, 2003.
[28] O. B. Awojoyogbe, “A mathematical model of the Bloch NMR equations for quantitative analysis of blood flow in blood vessels with changing cross–section–I,” Physica A, vol. 303, pp. 163–175, 2002.
[29] T. Plakhotnik, “Optical Bloch equations and enhanced decay of Rabi oscillations in strong driving fields,” Chemical Physics, vol. 321, pp. 337–340, 2006.
[30] H. R. Noh and W. Jhe, “Analytic solutions of the optical Bloch equations,” Optics Communications, vol. 283, pp. 2353–2355, 2010.
[31] F. Bloch, “Nuclear induction,” Physical Review, vol. 70, pp. 460–474, 1946.
[32] L. M. Pecora, T. L. Carroll, G. A. Johnson, D. J. Mar, and J. F. Heagy, “Fundamentals of synchronization in chaotic systems: Concepts and applications,” Chaos, vol. 7, pp. 520–543. 1997.
[33] K. Tanaka and H. O. Wang, Fuzzy Control System Design and Analysis: A Linear Matrix Inequality Approach. New York: Wiley, 2001.
[34] K. Tanaka and M. Sugeno, “Stability analysis and design of fuzzy control system,” Fuzzy Sets and Systems, vol. 45, pp. 135–156, 1992.
[35] K. Tanaka, T. Ikeda, and H. O. Wang, “Fuzzy regulators and fuzzy observers: Relaxed stability conditions and LMI–based designs,” IEEE Transactions on Fuzzy Systems, vol. 6, pp. 250–265, 1998.
[36] H. O. Wang, K. Tanaka, and M. F. Griffin, “An approach to fuzzy control of nonlinear systems: Stability and design issues,” IEEE Transactions on Fuzzy Systems, vol. 4, pp. 14–23, 1996.
[37] A. Sala and C. Arino, “Asymptotically necessary and sufficient conditions for stability and performance in fuzzy control: Applications of Polya’s theorem,” Fuzzy Sets and Systems, vol. 158, pp. 2671–2686, 2007.
[38] V. F. Montagner, R. C. L. F. Oliveira, and P. L. D. Peres, “Convergent LMI Relaxations for Quadratic Stabilizability and H-infinity Control of Takagi–Sugeno Fuzzy Systems,” IEEE Transactions on Fuzzy Systems, vol. 17, pp. 863–873, 2009.
[39] K. Tanaka, T. Ikeda, and H. O. Wang, “A unified approach to controlling chaos via arm LMI-based fuzzy control system design,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 45, pp. 1021–1040, 1998.
[40] H. K. Lam and M. Gani, “Chaotic synchronization using fuzzy control approach,” International Journal of Fuzzy Systems, vol. 9, pp. 116–121, 2007.
[41] J. C. Yen and J. I. Guo, “A new image encryption algorithm and its VLSI architecture,” in Proceedings of the IEEE workshop signal processing systems, 1999, pp. 430–437.
[42] J. C. Yen and J. I. Guo, “A new chaotic key based design for image encryption and decryption,” in Proceedings of the IEEE International Symposium Circuits and Systems 4, 2000, pp. 49–52.
[43] S. Li, X. Zheng, X. Mou, and Y. Cai, “Chaotic encryption scheme for real time digital video,” in Proceedings of the SPIE on electronic imaging, San Jose, CA, USA, (2002).
[44] H. C. Chen, J. F. Chang, J. J. Yan, and T. L. Liao, “EP–based PID control design for chaotic synchronization with application in secure communication,” Expert Systems With Applications, vol. 34, pp. 1169–1177, 2008.
[45] C. K. Huang, S. C. Tsay, and Y. R. Wu, “Implementation of chaotic secure communication systems based on OPA circuits,” Chaos Solitons & Fractals, vol. 23, pp. 589–600, 2005.
[46] A. Y. Pogromsky, G. Santoboni, and H. Nijmeijer, “An ultimate bound on the trajectories of Lorenz systems and its applications,” Nonlinearity, vol. 16, pp. 1597–1605, 2003.
[47] Y. J. Sun, “Solution bounds of generalized Lorenz chaotic systems,” Chaos Solitons & Fractals, vol. 40, pp. 691–696, 2009.
[48] T. Zhou, Y. Tang, and G. Chen, “Complex dynamical behaviors of the Chen’s systems,” International Journal of Bifurcation and Chaos, vol. 9, pp. 2561–2574, 2003.
[49] C. H. Lee, “Solution bounds of the continuous Riccati matrix equation,” IEEE Transactions on Automatic Control, vol. 48, pp. 1409–1413, 2003.
[50] J. H. Kim and Z. Bien, “Some bounds of the solution of the algebraic Riccati equation,” IEEE Transactions on Automatic Control, vol. 37, pp. 1209–1210, 1992.
[51] V. S. Kouikoglou and Y. A. Phillis, “Trace bounds on the covariances of continuous–time systems with multiplicative noise,” IEEE Transactions on Automatic Control, vol. 38, pp. 138–142, 1993.
[52] C. H. Lee, T. H. S. Li, and F. C. Kung, “A new approach for the robust stability of perturbed systems with a class of noncommensurate time delays,” IEEE Transactions on Circuits and Systems I-Regular Papers, vol. 40, pp. 605–608, 1993.
[53] S. P. Bhat and D. S. Bernstein, “Finite–time stability of homogeneous systems,” in Proceedings of the American Control Conference, 1997, pp. 2513–2514.
[54] S. P. Bhat and D. S. Bernstein, “Finite–time stability of continuous autonomous systems,” SIAM Journal on Control and Optimization, vol. 38, pp. 751–766, 2000.
[55] Y. J. Sun, “Exponential synchronization between two classes of chaotic systems,” Chaos Solitons & Fractals, vol. 39, pp. 2363–2368, 2009.
[56] J. S. Lin, T. L. Liao, J. J. Yan, and M. L. Hung, “Exponential synchronization of chaotic systems subject to uncertainties in the control input,” Applied Mathematics and Computation, vol. 216, pp. 2441–2449, 2010.
[57] J. H. Lü, G. R. Chen, D. Cheng, and S. Celikovsky, “Bridge the gap between the Lorenz system and the Chen system,” International Journal of Bifurcation and Chaos, vol. 12, pp. 2917–2926, 2002.
[58] X. Yu and Z. Man, “Fast Terminal Sliding-Mode Control Design for Nonlinear Dynamical Systems,” IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications, vol. 49, pp. 261–264, 2002.
[59] Y. Y. Hou, T. L. Liao, and J. J. Yan, “H∞ synchronization of chaotic systems using output feedback control design,” Physica A, vol. 379, pp. 81–89, 2007.
指導教授 王文俊 審核日期 2012-11-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明