博碩士論文 995201024 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:44 、訪客IP:18.119.248.214
姓名 范哲豪(Che-Hao Fan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具前饋式等化器及可降低電磁干擾之6 Gbps串列傳輸發射器
(A 6 Gbps, EMI-Reduction Serial Link Transmitter Using a Feed-Forward Equalizer)
相關論文
★ 一種應用於觸控液晶顯示器的新型嵌入式開關★ 多重相位之延遲鎖定迴路倍頻器設計與分析
★ 2.5Gbps串列收發器設計★ 具低抖動與可適應式頻寬之自我偏壓鎖相迴路設計
★ 應用於串列傳輸之2.5GB/s CMOS 超取樣資料回復電路★ 全數位任意責任週期之同步映射延遲電路
★ 全數位式互補金屬氧化半導自我取樣延遲線電路用於時脈抖動量測★ 500MHz,30個相位輸出之鎖相迴路應用於三倍超取樣時脈回復系統
★ 設計於90奈米製程輸出頻率為100MHz-1GHz之具可適應性頻寬鎖相迴路★ 高解析度可變動責任週期之同步複製延遲電路
★ 奈米CMOS晶片內序列傳輸之接收器★ 奈米CMOS晶片內序列傳輸之送器
★ 基於鎖相迴路之多重相位脈波產生器★ 低能量時脈儲存元件之分析、設計與量測
★ 具有預先增強器之Gbps串列連結傳送器及全數位超取樣資料回復器★ 應用於10Gbps晶片系統傳輸鏈之低抖動自我校準鎖相迴路設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來由於多媒體應用的普及使得資料存取的需求量增加,為了滿足更高速的資料傳輸頻寬並且降低成本,串列連結技術的應用已經普遍流行。此外,隨著電子裝置的操作頻率日趨提高,電磁干擾效應(EMI)越來越嚴重。在時脈產生電路中,由於集中的能量所造成的電磁干擾也將成為介面傳輸系統中的主要雜訊來源,因此為了降低電磁干擾效應,展頻時脈技術已廣泛的應用於時脈產生器中。
本論文在TSMC 90 nm CMOS製程下提出了一應用於6-Gb/s有線傳輸且具有3-tap前饋等化器之串列發射器。隨著資料傳輸速率上升並且達到每秒兆位元的速度,有限頻寬的通道對於訊號傳遞的衰減已造成嚴重的衝擊,相對的,輸入/輸出緩衝器的設計也將面臨著嚴峻的考驗。另外,當高速資料經過通道傳輸時,由於及膚效應以及通道的介質損耗將使得接收端的資料造成嚴重的符際干擾(Inter-symbol Interference, ISI)。為了解決上述的問題,本論文除了實現一可將低速並列資料轉換成高速串列資料之樹狀串列器,並在輸出端亦加入了可消除前、後標記(Pre-cursor, Post-cursor)之3-tap的前饋等化器。前饋等化器係利用數位濾波器的原理,將資料延遲的總和作為輸出並使得輸出訊號達到預先失真的效果,在經過通道損耗後仍可獲得張開的資料眼圖。
除此之外,高速的資料傳輸同時面臨著電磁輻射干擾效應影響,本論文利用一操作於6 GHz且具有相位補償之展頻時脈電路來降低傳輸資料之峰值功率。本展頻時脈電路分別由一鎖相迴路以及一延遲鎖相迴路所組成,此架構可免於頻寬外之量化誤差所影響以及數位雜訊之耦合干擾。經由模擬驗證,216-1之隨機資料通過39.36英吋FR-4通道 (16.6 dB損耗),在6-Gb/s操作下補償後接收端前之眼圖的峰對峰值抖動為35.28 ps (資料眼寬為0.788 UI),同時在5000-ppm的頻率偏移下具有24 dB的EMI衰減量。PISO和SSCG的核心面積消耗晶片面積約0.07和0.13 mm2,而功率消耗分別為61.2 mW和56.2 mW。
摘要(英) Recently, owning to the requirement of the enormous data storage in the multimedia application, the serial link technique, satisfying with the higher data bandwidth, becomes the popular scheme as well as shows the advantage of low cost. In addition, as the electrical devices increase the operation frequency, the problem of electromagnetic interference (EMI) becomes sever. Thus, the EMI steaming from the concentrated peak energy of the clock generator will interfere with the other equipments. Accordingly, the spread spectrum clock generator (SSCG) is commonly used to reduce the EMI.
A 6-Gb/s, 90-nm transmitter incorporating the three-tap feed-forward equalizer (FFE) is presented for the wire line communication. As the data rate rises up to mutigigabits per second, the impact of the limited bandwidth of the channel on the signal degradation has becoming severe with respect of the I/O buffer design for data transmission. Hence, the induced problem, which is the so-called inter-symbol interference (ISI), is mainly caused by skin effect and dielectric loss of the channel while transmitting the high speed random data. To overcome such issue, this study implements a tree-type parallel-in-serial-out (PISO) serializer, and the three-tap FFE, which consists of the pre-, main-, and post-tap, respectively, to pre-emphasize the serial data at the Tx output. The operation principle of the FFE resembles the FIR filter theory. The FFE pre-distorts the low frequency component of the data stream by the sum of each current weighting, which is controlled by the symbol-spaced data. In other words, such operation seems to pull up the high frequency component of the data in advance. Accordingly, via the predicted channel loss, the eye could be still opened at the Rx terminal. In addition, for the radiation issue of EMI, the 6-GHz phase-compensated SSCG is used to spread the peak power of the transmitted data. Such architecture is composed of DLL and PLL, showing the immunity to out-of-band quantization error and digital noise coupling. Thus, through a 39.36-in FR4 PCB trace with a 16.6-dB loss, the simulated peak-to-peak jitters of the 6-Gb/s, 216-1 random bit data is 35.28 ps (i.e., the eye width is 0.788 UI) at the Rx terminal, as well as the EMI is approximated to 24 dB with a 5000-ppm frequency deviation. The chip core area of the PISO and SSCG occupy 0.07 and 0.13 mm2, respectively. The power consumption are 61.2 mW and 56.2 mW at supply of 1.2 V.
關鍵字(中) ★ 串列傳輸發射器
★ 展頻時脈電路
★ 前饋式等化器
關鍵字(英) ★ Tx
★ SSCG
★ FFE
論文目次 摘要 ii
Abstract iv
誌謝 vi
目錄 viii
圖目錄 x
表目錄 xiii
第1章 緒論 1
1.1 研究動機 1
1.2 論文大綱 3
第2章 高速串列傳輸接收器系統 5
2.1 串列傳輸技術簡介 5
2.2 通道模型考量 6
2.3 等化器補償技術 7
2.4 展頻時脈產生器概論 9
2.4.1 電磁干擾來源與解決方法 9
2.4.2 展頻時脈技術理論 11
2.4.3 展頻時脈產生器分類 12
第3章 串列傳輸發射器電路設計與模擬結果 15
3.1 電路架構 15
3.2 串列器 16
3.3 預先增強器 20
3.3.1 數學模型與分析 21
3.3.2 電路架構與操作 23
3.3.3 通道響應及參數設計 24
3.4 模擬結果 28
第4章 雙迴路展頻時脈電路設計與模擬結果 33
4.1 非整數頻率除頻器 33
4.1.1 三角積分補償技術 35
4.1.2 挹注電流補償技術 38
4.2 電路架構 40
4.3 展頻時脈電路設計與模擬 43
4.3.1 鎖相迴路 43
4.3.1.1 環形壓控振盪器 43
4.3.1.2 雙模數除頻器和調變機制 46
4.3.2 延遲鎖相迴路 48
4.3.2.1 壓控延遲線 49
4.3.2.2 電流補償充電泵 51
4.3.2.3 相位攪拌器 54
4.3.3 雙迴路展頻時脈電路頻寬設計考量 56
4.4 模擬結果 63
第5章 串列傳輸發射系統佈局與量測考量 69
5.1 串列傳輸發射系統之電路佈局 69
5.2 串列傳輸發射系統之量測設置 72
第6章 結論與未來研究方向 77
6.1 結論 77
6.2 未來研究方向 78
參考文獻 79

參考文獻 [1] Brian C. Wadell, Transmission Line Design Handbook. Norwood: Artech House Inc, 1991
[2] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, no. 2, pp. 304–314, May 2004.
[3] H. S. Li, Y. C. Cheng, and D. Puar, “Dual-loop spread-spectrum clock generator,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 1999, pp. 184–185.
[4] A. Shoval, W. M. Snelgrove, and D. A. Johns, “A 100 Mb/s BiCMOS adaptive pulse-shaping filter,” IEEE J. Select. Areas Commun., vol. 13, pp. 1692–1702, Dec. 1995.
[5] F. Pareschi, G. Setti, and R. Rovatti, “A 3-GHz serial ATA spread-spectrum clock generator employing a chaotic PAM modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 10, pp. 2577–2587, Mar. 2010.
[6] K. H. Cheng, C. L. Hung, C. H. Chang, Y. L. Lo, W.-B. Yang, and J. W. Miaw, “A Spread-Spectrum Clock Generator Using Fractional-N PLL Controlled Delta-Sigma Modulator for Serial-ATA III,” in Proc. IEEE Int. Symp. Design and Diagnostics of Electronic Circuits and Systems, Apr. 2008, pp. 1–4.
[7] H. H. Chang, I. H. Hua, and S. I. Liu, “A spread-spectrum clock generator with triangular modulation,” IEEE J. Solid-State Circuits, vol. 38, no. 4, pp. 673–676, Apr. 2003.
[8] J. Kim, P. Jun, and J. Kim, “Dithered timing spread spectrum clock generation for reduction of electromagnetic radiated emission from high-speed digital system,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Aug. 2002, pp. 413–418.
[9] M. Kokubo, T. Kawamoto, T. Oshima, T. Noto, M. Suzuki, S. Suzuki, T. Hayasaka, T. Takahashi, J. Kasai, “Spread-spectrum clock generator for serial ATA using fractional PLL controlled by ΔΣ modulator with level shifter,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 160–590.
[10] J. K. Kim, J. Kim, G. Kim and D. K. Jeong, “A Fully Integrated 0.13-μm CMOS 40-Gb/s Serial Link Transceiver,” IEEE J. Solid-State Circuits, vol. 44, no. 5, pp. 1510-1521, May. 2009.
[11] J. Kim, J. K. Kim, B. Lee, M. S. Hwang, H. R. Lee, S. H. Lee, N. Kim, D. K. Jeong, and W. Kim, “Circuit techniques for a 40 Gb/s transmitter in 0.13 μm CMOS,” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2005, pp. 150–151.
[12] P. Chiang and W.J. Dally et al., “A 20-Gb/s 0.13-μm CMOS Serial Link Transmitter Using an LC-PLL to Directly Drive the Output Multiplexer,” IEEE J. Solid-State Circuits, vol. 40, no. 4, pp. 1004-1011, Apr. 2005.
[13] H. Wang and J. Lee, “A 21-Gb/s 87-mW transceiver with FFE/DFE/analog equalizer in 65-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 45, no. 4, pp. 909–920, Apr. 2010.
[14] D. R. Stauffer, J. T. Mechler, M. A. Sorna, K. Dramstad, C. R. Ogilvie, A. Mohammad, J. D. Rockrohr, High Speed Serdes Devices and Applications, Springer, 2008.
[15] S. M. Lee, J. Y. Sim, and H. J. Park, “An analytic decision method for the feedforward equalizer tap-coefficients at transmitter,” in Proc. IEEE Int. SoC Design Conf., Nov. 2009, pp. 400 –403.
[16] J. Winters and R. Gitlin, “Electrical signal processing techniques in long-haul fiber optics systems,” IEEE Trans. Commun., vol. 38, pp. 1439–53, Sep. 1990.
[17] S. I. Liu and C. Y. Yang, A Phase Locking Loop, Taipei : Tsang Hai, 2006.
[18] C. Y. Yang, C. H. Chang, and W. G. Wong, “A Σ-∆ PLL-based spread-spectrum clock generator with a ditherless fractional topology,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 56, no. 1, pp. 51–59, Jan. 2009.
[19] Y. B. Hsieh and Y. H. Kao, “A spread-spectrum clock generator using fractional-N PLL with an extended range Σ-∆ modulator,” ICICE Trans. Electron., vol. E-89C, pp. 851–857, 2006.
[20] Y. B. Hsieh and Y. H. Kao, “A fully integrated spread spectrum clock generator by using direct VCO modulation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 7, pp. 1845–1853, Aug. 2008.
[21] Y. H. Kao and Y. H. Hsieh, “A low-power and high-precision spread spectrum clock generator for serial advanced technology attachment applications using two-point modulation,” IEEE Trans. Electromagn. Comp., vol. 51, no. 2, pp. 245–254, May 2009.
[22] Y. H. Kao, RF Phase Locking Loop IC Design, Taipei : Tsang Hai, 2005.
[23] B. W. Garlepp, K. S. Donnelly, J. Kim, P. S. Chau, J. L. Zerbe, C. Huang, C. V. Tran, C. L. Portmann, D. Stark, Y. F. Chan, T. H. Lee, and M. A. Horowitz, “A portable digital DLL for high-speed CMOS interface circuits,” IEEE J. Solid-State Circuits, vol. 34, no. 5, pp. 632–644, May 1999.
[24] B. Razavi, Design of Analog CMOS Integrated Circuits. New York : McGraw-Hill, 2001.
[25] B. Chang, J. Park, and W. Kim, “A 1.2- GHz CMOS dual-modulus prescaler using new dynamic D-type flip-flop,” IEEE J. Solid-State Circuits, vol. 31, pp. 749–752, May 1996.
[26] S. J. Bae, H. J. Chi, Y. S. Sohn, and H. J. Park, “A VCDL-based 60–760 MHz dual-loop DLL with infinite phase-shift capability and adaptivebandwidth scheme,” IEEE J. Solid-State Circuits, vol. 40, no. 5, pp. 1119–1129, May 2005.
[27] T. Beukema, M. Sorna, K. Selander, S. Zier, B. L. Ji, P. Murfet, J. Mason, W. Rhee, H. Ainspan, B. Parker, and M. Beakes, “A 6.4-Gb/s CMOS SerDes core with feed-forward and decision-feedback equalization,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2633–2645, Dec. 2005.
[28] R. Payne, P. Landman, B. Bhakta, S. Ramaswamy, S. Wu, J. D. Powers, M. U. Erdogan, A-L. Yee, R. Gu, L. Wu, Y. Xie, B. Parthasarathy, K. Brouse, W. Mohammed, K. Heragu, V. Gupta, L. Dyson, and W. Lee, “A 6.25-Gb/s binary transceiver in 0.13- m CMOS for serial data transmission across high loss legacy backplane channels,” IEEE J. Solid-State Circuits, vol. 40, no. 12, pp. 2646–2657, Dec. 2005.
[29] W. C. Chen, C. C. Tsai, C. H. Chang, and Y. C. Peng, et al., "A 2.5-8Gb/s transceiver with 5-tap DFE and Second order CDR against 28-inch channel and 5000ppm SSC in 40nm CMOS technology", in Proc. IEEE Custom Integrated Circuits Conf., 2010, pp. 1 – 4.
[30] H. Yamaguchi, H. Tamura, Y. Doi, Y. Tomita, T. Hamada, M. Kibune, et al., “A 5Gb/s transceiver with an ADC-Based feedforward CDR and CMA adaptive equalizer in 65nm CMOS”, in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, Feb. 2010, pp. 168-169.
[31] A. C. Faust, R.L. Narasimha, K. Bhatia, A. Srivastava, C. Kong, H. M. Bae, E. Rosenbaum, N. Shanbhag, “FEC-based 4 Gb/s backplane transceiver in 90nm CMOS,” in Proc. IEEE Custom Integrated Circuits Conf., Sep. 2012, pp. 1 – 4.
指導教授 鄭國興(Kuo-Hsing Cheng) 審核日期 2012-11-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明