博碩士論文 973403027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.219.202.245
姓名 鄒仕豪(Shih-hao Chou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 重力驅動顆粒流體之流動行為研究
(Study of granular flow behavior in gravity-driven flows)
相關論文
★ 筆記型電腦改良型自然對流散熱設計★ 移動式顆粒床過濾器濾餅流場與過濾性能之研究
★ IP67防水平板電腦設計研究★ 汽車多媒體導航裝置散熱最佳化研究
★ 流動式顆粒床過濾器三維流場觀察及能性能測試★ 流動式顆粒床過濾器冷性能測試
★ 流動式顆粒床過濾器過濾機制研究★ 二維流動式顆粒床過濾器內部配置設計研究
★ 循環式顆粒床過濾器過濾性能研究★ 流動式顆粒床過濾器之流場型態設計與研究
★ 流動式顆粒床過濾器之流動校正單元設計與分析研究★ 流動式顆粒床過濾器之雙葉片型流動校正單元設計與冷性能過濾機制研究
★ 稻稈固態衍生燃料成型性分析之研究★ 流動式顆粒床過濾器之不對稱葉片設計與冷性能過濾機制研究
★ 流動式顆粒床過濾器之滾筒式粉塵分離系統與冷性能過濾及破碎效應研究★ 稻稈固態衍生燃料加入添加物成型性分析之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文主要在研究與探討重力驅動的顆粒體之運動行為。其中,包括漿態旋轉儀中的顆粒之尺寸分離機制、顆粒的傳輸性質與所造成的不同流態。此外,並探討濕系統下顆粒之間因為液橋現象造成的內聚力對顆粒運動行為的影響。最後本論文也針對顆粒在傾斜滑道中高速流動下時,若遇到阻礙物時所產生的震波行為加以探討。
在漿態旋轉儀中,若同時存在兩種不同尺寸大小的顆粒時,將產生因為滲透效應形成的核心分離情形。由實驗結果中我們可以發現,隨著間隙流體黏度的增加或是顆粒填充率的減少,都將導致分離指標的降低。其中,當間隙流體黏度超過一定值後,我們更可以發現到,在分離的過程中,分離指標將急劇的降到一個極低值再開始回升,此現象稱之為過混合行為(overmixing)。另外,在此研究中我們更定義了一個新的無因次流動參數,藉由這個參數,我們可以很清楚的用來區分兩種不同的顆粒流動形態。當此無因次流動參數低過一定值後,流態將從滾動型態(rolling regime)轉變至翻滾型態(cascading regime)。
在漿態旋轉儀中顆粒傳輸性質與流態變化的研究方面,同一時間我們只採用單一性質的顆粒體在旋轉儀中。藉由幾個分析參數對間隙流體黏度的變化,我們可以定義出在漿態旋轉儀中有著四個不同的流態:滾動型態、翻滾型態、激流型態(cataracting regime)和懸浮型態(suspension regime)。從實驗結果中我們可以發現,在低黏度下,所有顆粒的平均重心與容器中心的距離和初始配置下的距離是很接近的,但是當間隙流體黏度增加後,將產生劇烈性的變化。此外,在系統中所有顆粒的平均速度隨著間隙流體黏度的變化方面,整體顆粒平均速度呈現先減速後加速的行為。最後我們更以間隙流體黏度和單位寬度下的顆粒流率為參數,借此畫出漿態系統中的流態分佈圖(regime map)。
此外,藉由一系列添加微量液體於顆粒流場的實驗,我們可以用來探討濕粒子間液橋力對顆粒流動行為的影響。由實驗結果中指出,當添加的液體量很少時,因為液體將先填滿顆粒表面的凹凸不平處,因此在顆粒之間將沒有液橋的產生。當添加的液體量超過一定值後,每顆顆粒之間都將產生液橋。此外,隨著添加液體量的增加,顆粒運動過程中液橋的建立與斷裂所造成的能量損耗也會增加。
最後本論文也利用離散元素法(DEM)來針對在傾斜滑道中顆粒撞擊阻礙物所產生的震波現象加以研究。我們發現藉由離散元素法所得到的模擬結果和傳統的斜震波理論有著相當好的一致性。另外,在此研究中我們更進一步的去探討實驗中較難得到的顆粒微觀性質,如堆積密度(packing density)和配位數(coordination number)。
摘要(英) The main topic in this thesis is to investigate granular dynamics under gravity-driven forces. The research topics include particle size segregation and flow regime map in a slurry rotating drum, cohesive force between particles in wet rotating drums, and shock behavior of rapid granular flow down an inclined chute.
Firstly, in binary-mixture slurry granular systems, we find that the time revolution of the segregation index indicates that an increase in liquid viscosity and a decrease in filling degree will cause the segregation index to decrease. When the liquid viscosity is above a critical value, many systems rapidly decay to a local minimum after a short period of time (called “overmixing”). A new dimensionless flow variable is proposed to be used to distinguish the flow regimes. We also find that the flow regime changes from rolling to cascading when the dimensionless flow variable is below a critical value. Furthermore, the change of the segregation index occurs during the transition of the granular flow regime.
In mono-disperse slurry-granular systems, the distance between the centroid of all particles and the center of the rotating tank is the same as in the initial configuration at lower rotation speed or liquid viscosity, but the distance decreases rapidly when the liquid viscosity is above a critical value. The mean flow velocity will decrease with an increase of the liquid viscosity. When the liquid viscosity is above a critical value, the mean flow velocity will increase, and the granular flow behavior will transform into a suspension regime. Furthermore, the experimental results indicate that the liquid viscosity and the flow rate per unit width have a significant influence on the dynamic properties and flow behavior of the immersed granular matter.
To quantitatively determine the effect of the cohesive force on the dynamic properties of wet granular systems is one research topic in this thesis. A series of experiments is performed for wet granular matter in a rotating drum. The results indicate that when only very small amounts of liquid are added, no liquid bridges are formed. This is because the liquid is first trapped on the surface of the particles due to the particle roughness. When the volume fraction of the fluid becomes larger, liquid bridges formed on almost every particle. Once the liquid bridges are formed between all particles, the average energy dissipation due to the hysteretic formation and rupturing of the liquid bridges increases with an increase in the liquid content.
When a rapid avalanche flow is deflected by an obstacle, this usually causes abrupt changes in the flow thickness and velocity and exhibits characteristics like oblique shock waves in the aerodynamic system or oblique hydraulic jumps in the gravity-driven granular flows. We use the Discrete Element Method (DEM) to simulate the motion of granular materials impinging on a wedge obstacle in an adjustable inclined chute. The results of the simulations are compared with the classical oblique shock theory. We note that there is good agreement between the theoretical calculations and the DEM simulation results. Moreover, the microdynamic variables, related to the flow structure, such as the packing density and coordination number, are also discussed in the present study
關鍵字(中) ★ 顆粒流
★ 重力驅動流
★ 旋轉儀
★ 滑道
關鍵字(英) ★ granular flow
★ gravity-driven flow
★ rotating drum
★ inclination chute
論文目次 摘要..........................................................................................................i
Abstract......................................................................................................iii
Contents.......................................................................................................v
List of Figures................................................................................................vii
List of Tables.................................................................................................xiii
List of Symbols................................................................................................xiv
Chapter 1 Introduction.........................................................................................1
Chapter 2 Experimental Set Up and Analyses.....................................................................9
2.1 The apparatus of rotating drum.............................................................................9
2.2 The apparatus of inclined chute............................................................................9
2.3 Segregation index..........................................................................................10
2.4 Dynamic properties calculation.............................................................................11
Chapter 3 Simulation model.....................................................................................20
3.1 Particle forces............................................................................................21
3.1.1 Contact forces...........................................................................................21
3.1.2 Gravitational force......................................................................................22
3.2 Equation of motion.........................................................................................23
3.3 Determination of simulation parameters.....................................................................23
Chapter 4 The effect of interstitial fluid viscosity on particle segregation in a slurry rotating drum.........27
Chapter 5 Dynamic properties of immersed granular matter in different flow regimes in a rotating drum..........49
Chapter 6 Experimental analysis of the dynamic properties of wet granular matter in a rotating drum............65
Chapter 7 DEM simulation of oblique shocks in gravity-driven granular flows with wedge obstacles...............86
Chapter 8 Conclusion...........................................................................................114
Bibliography...................................................................................................116
參考文獻 Abouzeid, A. Z. M., “Powder Handling Process.,” 1, 173-177 (1989)
Asmar, B. N., Langston, P. A., Matchett, A. J., “A generalized mixing index in distinct element method simulation of vibrated particulate bed,” Granular Matter, 4, 129-138 (2002).
Asmar, B. N., Langston, P. A., Matchett, A. J., and Walters J. K., “Validation tests on a distinct element model of vibrating cohesive particle systems,” Comp. Chem. Engng., 26, 785-802 (2002).
Bacher, C., Olsen, P. M., Bertelsen, P., Sonnergaard, J. M., “Compressibility and compactibility of granules produced by wet and dry granulation,” Int. J. Pharm., 358, 69-74 (2008).
Batchelor, G. K., “An Introduction to Fluid Dynamics,” London: Cambridge University Press (1970).
Boating, A. A. and Barr, P. V., “Granular flow behavior in the transverse plane of a partially filled rotating cylinder,” J. Fluid Mech., 330, 233-249 (1997).
Boutreux, T. and deGennes, P. G., “Surface flows of granular mixtures .1. General principles and minimal model,” J. Phys. I, 6, 1295-1304 (1996).
Brewster, R., Grest, G. S., Landry, J. W., Levine, A. J., “Plug flow and the breakdown of Bagnold scaling in cohesive granular flows,” Phys. Rev. E, 72, 061301 (2005).
Bridgewater, J., Tranter, I., “The effect of interstitial liquid on inter-particle percolation,” J Powder Bulk Technol., 2, 9-14 (1978).
Bunin, G., Shokef, Y., Levine, D., “Frequency-dependent fluctuation–dissipation relations in granular gases,” Phys. Rev. E, 77, 051301 (2008).
Campbell, C. S., “Rapid granular flows,” Annu. Rev. Fluid Mech., 22, 57–92 (1990).
Capart, H., Young, D. L., Zech, Y., “Voronoï imaging methods for the measurement of granular flows,” Exp. Fluids, 32, 121-135 (2002).
Chaudhuri, B., Muzzio, F. J., Tomassone, M. S., “Modeling of heat transfer in granular flow in rotating vessels,” Chem. Eng. Sci., 61, 6348-6360 (2006).
Chou H. T. and Lee C. F., “Cross-sectional and axial flow characteristic of dry granular material in rotating drums,” Granul. Matter, 11, 13-32 (2009).
Cleary, P. W., “DEM simulation of industrial particle flows: case studies of dragline excavators, mixing in tumblers and centrifugal mills,” Powder Technol., 109, 83-104 (2000).
Cross, M., “The transverse motion of solids moving through rotary kilns,” Powder Technol., 22, 187-190 (1979).
Cundall, P. A. and Strack, O. D. L., “A discrete numerical model for granular assemblies,” Gèotechnique, 29, 47-65 (1979).
Datta, A., Mishra, B. K., Das, S. P., Sahu, A., “A DEM analysis of flow characteristics of noncohesive particles in hopper,” Mater. Manuf. Process., 23, 196-203 (2008).
Dorsey, N. E., “Properties of ordinary water-substance in all its phases: water vapor, water, and all the ices,” 7nd ed. New York: Reinhold Pub. Corp. (1940).
du Pont, S. C., Gondret, P., Perrin, B., Rabaud, M., “Granular avalanches in fluids,” Phys. Rev. Lett., 90, 044301 (2003).
Dury C. M. and Ristow G. H., “Competition of mixing and segregation in rotating cylinders,” Phys. Fluids, 11, 1387-1394 (1999).
Ennis, B. J., Green, J., Davies, R., “The Legacy of Neglect in the U.S.,” Chem. Eng. Prog., 90, 32 (1994).
Eskin D. and Kalman H., “A numerical parametric study of size segregation in a rotating drum,” Chem. Eng. Process, 39, 539-545 (2000).
Faug, T., Beguin, R., Chanut, B., “Mean steady granular force on a wall overflowed by free-surface gravity-driven dense flows,” Phys. Rev. E, 80, 021305 (2009).
Felix, G., Falk, V., Ortona, U., “Segregation of dry granular material in rotating drum: experimental study of the flowing zone thickness,” Powder Technol., 128, 314-319 (2002).
Fiedor, S. J. and Ottino, J. M., “Dynamics of axial segregation and coarsening of dry granular materials and slurries in circular and square tubes,” Phys. Rev. Lett, 91, 244301 (2003)
Finger, T. and Stannarius, R., “Influence of the interstitial liquid on segregation patterns of granular slurries in a rotating drum,” Phys. Rev. E, 75, 301308 (2007).
Fingerle, A., Roeller, K., Huang, K., Herminghaus, S., “Phase transitions far from equilibrium in wet granular matter,” New J. Phys., 10, 053020 (2008).
Fischer, R., Gondret, P., Rabaud, M., “Transition by intermittency in granular matter : from discontinuous avalanches to continuous flow,” Phys. Rev. Lett., 103, 128002 (2009).
GDR, MiDi., “On dense granular flow,” Eur. Phys. J. E, 14, 341-365 (2004).
German, R. M., “Particle packing characteristics,” Metal Powder Industries Federation, Princeton, New Jersey (1989).
Geromichalos, D., Kohonen, M.M., Mugele, F., Herminghaus, S., “Mixing and condensation in a wet granular medium,” Phys. Rev. Lett., 90, 168702 (2003).
Gray, J. M. N. T., Irmer, A., Tai, Y. C., Hutter K., “Plane and oblique Shocks in shallow granular flows,” In 22nd Intl. Symp. on Shock Waves, Imperial College, London, UK, July 18–23, 1999. Paper 4550, 1447–1452, Bound Proceedings ISBN 0854327118, CD-Rom ISBN 0845327061 (1999a).
Gray, J. M. N. T., “Granular flow in partially filled slowly rotating drums,” J. Fluid Mech., 441, 1-29 (2001)
Gray, J. M. N. T. and Cui, X., “Weak, strong and detached oblique shocks in gravity driven granular free-surface flows,” J. Fluid Mech. 579, 113-136 (2007).
Gray, J. M. N. T., Tai, Y. C., Noelle, S., “Shock waves, dead-zones and particle-free regions in rapid granular free-surface flows,” J. Fluid Mech. 491, 161-181 (2003).
Hákonardóttir, K. M. and Hogg, A. J., “Oblique shocks in rapid granular flows,” Phys. Fluids, 17, 0077101 (2005).
Henein, H., Brimacombe, J. K., Watkinson, A. P., “Experimental study of transverse bed motions in rotary kilns,” Metal Trans B, 14, 191-205 (1983).
Herrmann, H. J., “Physics of granular media,” Chaos solitons & fractals., 203-212 (1995).
Herminghaus, S., “Dynamics of wet granular matter,” Adv. Phys., 54, 221-261 (2005).
Hill, K. M. and Kakalios, J., “Reversible axial segregation of rotating granular media,” Phys. Rev. E, 52, 4393-4400 (1995).
Hornbaker, D. J., Albert, R., Albert, I., Barabasi, A. L., Schiffer, P., “What keeps sandcastles standing,” Nature, 387, 765-765 (1997).
Hsiau, S. S. and Jang, H. W., “Measurements of velocity fluctuations of granular materials in a shear cell,” Exp, Thermal and Fluid Sci., 17, 202-209 (1998).
Hsiau, S. S. and Shieh, Y. H., “Fluctuations and self-diffusion of sheared granular material flows,” J. Rheol., 43, 1049-1066 (1999).
Hsiau, S. S. and Yang, W. L., “Stresses and transport phenomena in sheared granular flows with different wall conditions,” Phys. Fluids, 14, 612–621 (2002).
Hsiau, S. S., Lu, L. S., Chou, C. Y., Yang, W. L., “Mixing of cohesive particles in a shear cell,” Int. J. Multiph. Flow, 34, 352-362 (2008).
Ippen, A. T., “Mechanics of supercritical flow,” ASCE., 116, 268-296 (1949).
Iverson, R. M., “The physics of debris-flows,” Rev. Geophys., 35, 245-296 (1997).
Jaeger, H. M., Liu, C. H., Nagel, S. R., Witten, T. A.. “Friction in granular flows,” Eur. Lett., 11, 619-624 (1990).
Jaeger, H. M. and Nagel, S. R., “Physics of the granular state,” Science, 255, 1523 (1992).
Jain, N., Ottino, J. M., Lueptow, R. M., “An experimental study of the flowing granular layer in a rotating tumbler,” Phys. Fluids, 14, 572-582 (2002).
Jain, N., Ottino, J. M., Lueptow, R. M., “Effect of interstitial fluid on a granular flowing layer,” J. Fluid Mech., 508, 23-44 (2004).
Jain, N., Ottino, J. M., Lueptow, R. M., “Combined size and density segregation and mixing in noncircular tumblers,” Phys. Rev. E, 71, 051301 (2005).
Jain N., Ottino J. M., Lueptow R. M., “Regimes of segregation and mixing in combined size and density granular systems: an experimental study,” Granul. Matter, 7, 69-81 (2005).
Karion, A., Couette Flows of Granular Materials: Mixing, Rheology, and Energy Dissipation. Ph. D. thesis, California Institute of Technology, CA, U. S. A., 2000.
Khakhar, D. V., Orpe, A. V., Hajra, S. K., “Segregation of granular materials in rotating cylinders,” Physica A, 318, 129-136 (2003).
Kohonen, M. M., Geromichalos, D., Scheel, M., Schierb, C., Herminghaus, S., “On capillary bridges in wet granular materials,” Physica A, 339, 7-15 (2004).
Komatsu, T. S., Inagaki, S., Nakagawa, N., Nasuno, S., “Creep motion in a granular pile exhibiting steady state surface flows,” Phys. Rev. Lett., 86, 1757-1760 (2001).
Kwapinska, M., Saage, G., Tsotsas, E., “Continuous versus discrete modeling of heat transfer to agitated beds,” Powder Technol., 181, 331-342 (2008).
Lehmberg, J., Hehl, M., Schugerl, K., “Transverse mixing and heat transfer in horizontal rotary drum reactors,” Powder Technol., 18, 149-163 (1977).
Li, H. M., McCarthy, J. J., “Cohesive particle mixing and segregation under shear,” Powder Technol., 164, 58-64 (2006).
Lian, G. P., Thornton, C., Adams, M. J., “Discrete particle simulation of agglomerate impact coalescence,” Chem. Eng. Sci., 53, 3381-3391 (1998).
Liu, L. F., Zhang, Z. P., Yu, A. B., “Dynamic simulation of the centripetal packing of mono-sized spheres,” Phys. A, 268, 433-453 (1999).
Liu, X. Y., Specht, E., Mellmann, J., “Experimental study of the lower and upper angles of repose of granular materials in rotating drums,” Powder Technol., 154, 125-131 (2005).
Lu, L. S. and Hsiau, S. S., “DEM simulation of particle mixing in a sheared granular flow,” Particulogy, 6, 445-454 (2008).
Lybaert. P., “Wall-particle heat transfer in rotating heat exchangers,” Int. J. Heat Mass Transf., 30, 1663-1672 (1987).
Mason, T. G., Levine, A. J., Ertas, D., Halsey, T. C., “Critical angle of wet sandpiles,” Phy. Rev. E, 60, R5044-R5047 (1999).
Massol-Chaudeur, S., Berthiaux, H., Dodds, J. A., “Experimental study of the mixing kinetics of binary pharmaceutical powder mixtures in a laboratory hoop mixer,” Chem Eng Sci., 57, 4053-4065 (2002).
Mellmann, J., “The transverse motion of solids in rotating cylinders-forms of motion and transition behavior,” Powder Technol., 118, 251-270 (2001).
Molina-Boisseau, S., Bolay, N. L., “The mixing of polymeric powder and the grinding medium in a shaker beadmill,” Powder Technol., 123, 212-220 (2002).
Nowak, S., Samadani, A., Kudrolli, A., “Maximum angle of stability of a wet granular pile,” Nat. Phys., 1, 50-52 (2005).
Nase, S. T., Vargas, W. L., Abatan, A. A., McCarthy, J. J., “Discrete characterization tools for cohesive granular material,” Powder Technol., 116, 214-223 (2001).
Natarajan, V. V. R., Hunt, M. L., Taylor, E. D., “Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow,” J. Fluid Mech., 304, 1-25 (1995).
Ng, W. K. and Tan, R. B. H., “Case study: optimization of an industrial fluidized bed drying process for large Geldart Type D nylon particles,” Powder Technol., 180, 289-295 (2008).
Nowak, S., Samadani, A., Kudrolli, A., “Maximum angle of stability of a wet granular pile,” Nat. Phys., 1, 50-52 (2005).
Orpe, A. V. and Khakhar, D. V., “Scaling relations for granular flow in quasi-two-dimensional rotating cylinders,” Phys. Rev. E, 64, 031302 (2001).
Perry, H. R. and Chilton, C. H., Chemical Engineers’ Handbook (Vol. 6. McGraw-Hill, New York, 11-46, 2003).
Pitois, O., Moucheront, P., Chateau, X., “Liquid bridge between two moving spheres: an experimental study of viscosity effects,” J. Colloid Interface Sci., 231, 26-31 (2000).
Pitois, O., Moucheront, P., Chateau, X., “Rupture energy of a pendular liquid bridge,” Eur. Phys. J. B, 23, 79-86 (2001).
Pohlman, N. A., Severson, B. L., Ottino, J. M., Lueptow, R. M., “Surface roughness effects in granular matter: Influence on angle of repose and the absence of segregation,” Phys. Rev. E., 73, 031304 (2006).
Pudasaini, S.P., Hsiau, S.S., Wang, Y., Hutter, K., “Velocity measurements in dry granular avalanches using image velocimetry technique and comparison with theoretical prediction,” Phys. Fluids, 17, 93-301 (2005).
Pudasaini, S. P., Hutter, K., Hsiau, S. S., Tai, S., Wang, Y., Katzenbach, R., 2007, “Rapid flow of dry granular materials down inclined chutes impinging on rigid wall,” Phys. Fluids, 19, 53-302.
Rajchenbach, J., “Flow in powders: from discrete avalanches to continuous regime,” Phys. Rev. Lett., 65, 2221-2224 (1990).
Ristow G. H., “Particle mass segregation in a 2-dimensional rotating drum,” Europhys Lett., 28, 97-101 (1994).
Rutgers, R., “Longitudinal mixing of granular material flowing through a rotating cylinder,” Chem. Eng. Sci., 20, 1079-1087, 1089-1100 (1965).
Samadani, A. and Kudrolli, A., “Segregation transitions in wet granular matter,” Phys. Rev. Lett., 85, 5102-5105 (2000).
Samadani, A. and Kudrolli, A., “Angle of repose and segregation in cohesive granular matter,” Phys Rev E, 64, 051301 (2001).
Savage, S. B. and Hutter, K., “The motion of a finite mass of granular material down a rough incline,” J. Fluid Mech., 199, 177-215 (1989).
Seville, J. P. K., Tüzün, U., Clift, R., Processing of Particulate Solids, Blackie Academic & Professional Lodon, UK (1997).
Shearer, M., Gray, J. M. N. T., Thornton, A. R., “Stable solutions of a scalar conservation law for particle-size segregation in dense granular avalanches,” Eur. J. Appl. Math., 19, 61-86 (2008).
Sheng, L. T., Kuo, C. Y., Tai, Y. C., Hsiau, S. S., “Indirect measurements of streamwise solid fraction variations of granular flows accelerating down a smooth rectangular chute,” Exp. Fluids, 51, 1329-1342 (2011).
Silbert, L. E., Ertas, D., Grest, G. S., Halsey, T. C., Levine, D., Plimptop, S. J., “Granular flow down an inclined plane: Bagnold scaling and rheology,” Phys. Rev. E, 64, 051302 (2001).
Simons, S. J. R. and Fairbrother, R. J., “Direct observations of liquid binder-particle interactions: the role of wetting behavior in agglomerate growth,” Powder Technol., 110, 44-58 (2000).
Sinnott, M. D. and Cleary, P. W., “Vibration-induced arching in a deep granular bed,” Granul. Matter, 11, 345-364 (2009).
Sparks, R.S.J., Barclay, J., Calder, E.S., Herd, R.A., Luckett, R., Norton, G.E., Ritchie, L., Voight, S.R. and Woods, A.W., 2002, Generation of a debris avalanche and violent pyroclastic density current on 26 December (Boxing Day) 1997 at Soufriere Hills Volcano, Monserrat. In: The eruption of Soufriere Hills Volcano, Monserrat, from 1995 to 1999 (Eds. Druitt & Kokelaar). Geological Society, London, Memoirs, 21, 409-435.
Sudah, O. S., Coffin-Beach, D., Muzzio, F. J., “Quantitative characterization of mixing of free-flowing granular material in tote (bin)-blenders,” Powder Technol., 126, 191-200 (2002).
Tegzes, P., Vicsek, T., Schiffer, P., “Avalanche dynamics in wet granular materials,” Phys. Rev. Lett., 89, 094301 (2002).
Tegzes, P., Vicsek, T., Schiffer, P., “Development of correlations in the dynamic of wet granular avalanches,” Phys. Rev. E, 67, 051303 (2003).
Teufelsbauer, H., Wang, Y., Chiou M. C., “Flow-obstacle interaction in rapid granular avalanches: DEM simulation and comparison with experiment,” Granul. Matter, 11, 209-220 (2009).
Thomas, N., “Reverse and intermediate segregation of large beads in dry granular media,” Phys. Rev. E, 62, 961-974 (2000).
Tsuji, Y., Kawaguchi, T., Tanaka, T., “Discrete particle simulation of two-dimensional fluidized bed,” Powder Technol., 77, 79-87 (1993).
Vallance, J.W., 2000. Lahars. In: Sigurdsson, H., Houghton, B., McNutt, S.R., Rymer, H., Stix, J. (Eds.), Encyclopedia of Volcanoes, Academic Press, San Diego. pp. 601-616.
Van Puyvelde, D. R., Young, B. R., Wilson, M. A., Schmidt, S. J., “Experimental determination of transverse mixing kinetics in a rolling drum by image analysis,” Powder Technol., 106, 183-191 (1999).
Wassgren, C. R., Vibration of granular materials. Ph. D. California Institute of Technology, CA, U. S. A., 1997.
Watanabe, H., “Critical rotation speed for ball-mills,” Powder Technol., 104, 95-99 (1999).
Willett, Ch. D., Adams, M. J., Johnson, S. A., Seville, J. P. K., “Capillary bridges between two spherical bodies,” Langmuir, 16, 9396-9405 (2000).
Xu, Q., Orpe, A. V., Kudrolli, A., “Lubrication effects on the flow of wet granular materials,” Phys. Rev. E, 76, 031302 (2007).
Yang, W. L. and Hsiau, S. S., “Wet granular materials in sheared flows,” Chem. Eng. Sci., 60, 4265-4274 (2005).
Yang, W. L. and Hsiau, S. S., “The effect of liquid viscosity on sheared granular flows,” Chem. Eng. Sci., 61, 6085-6905 (2006).
Yang, R. Y., Zou, R. P., Yu, A. B., “Computer simulation of packing of fine particles,” Phys. Rev. E, 62, 3900-3908 (2000).
Yang, R. Y., Zou, R. P., Yu, A. B., “Microdynamic analysis of particle flow in a horizontal rotating drum,” Powder Technol., 130, 138-146 (2003).
指導教授 蕭述三(Shu-san Hsiau) 審核日期 2012-11-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明